scholarly journals A statistical test on single-cell data reveals widespread recurrent mutations in tumor evolution

2016 ◽  
Author(s):  
Jack Kuipers ◽  
Katharina Jahn ◽  
Benjamin J. Raphael ◽  
Niko Beerenwinkel

The infinite sites assumption, which states that every genomic position mutates at most once over the lifetime of a tumor, is central to current approaches for reconstructing mutation histories of tumors, but has never been tested explicitly. We developed a rigorous statistical framework to test the assumption with single-cell sequencing data. The framework accounts for the high noise and contamination present in such data. We found strong evidence for recurrent mutations at the same site in 8 out of 9 single-cell sequencing datasets from human tumors. Six cases involved the loss of earlier mutations, five of which occurred at sites unaffected by large scale genomic deletions. Two cases exhibited parallel mutation, including the dataset with the strongest evidence of recurrence. Our results refute the general validity of the infinite sites assumption and indicate that more complex models are needed to adequately quantify intra-tumor heterogeneity.

Author(s):  
Salem Malikić ◽  
Farid Rashidi Mehrabadi ◽  
Erfan Sadeqi Azer ◽  
Mohammad Haghir Ebrahimabadi ◽  
Suleyman Cenk Sahinalp

2021 ◽  
Author(s):  
Sanjana Rajan ◽  
Simone Zaccaria ◽  
Matthew V. Cannon ◽  
Maren Cam ◽  
Amy C. Gross ◽  
...  

AbstractOsteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNAs) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear if osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in 12,019 tumor cells obtained from expanded patient tissues using single-cell DNA sequencing, in ways that were previously impossible with bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from whole-genome single-cell DNA sequencing data. Surprisingly, we found that, despite extensive genomic aberrations, cells within each tumor exhibit remarkably homogeneous SCNA profiles with little sub-clonal diversification. Longitudinal analysis between two pairs of patient samples obtained at distant time points (early detection, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the bulk of SCNAs was acquired early in the oncogenic process, with few new events arising in response to therapy or during adaptation to growth in distant tissues. These data suggest that early catastrophic events, rather than sustained genomic instability, drive formation of these extensively aberrant genomes. Overall, we demonstrate the power of combining single-cell DNA sequencing with an allele- and haplotype-specific SCNA inference algorithm to resolve longstanding questions regarding genetics of tumor initiation and progression, questioning the underlying assumptions of genomic instability inferred from bulk tumor data.


2018 ◽  
Author(s):  
Salem Malikic ◽  
Simone Ciccolella ◽  
Farid Rashidi Mehrabadi ◽  
Camir Ricketts ◽  
Khaledur Rahman ◽  
...  

AbstractRecent technological advances in single cell sequencing (SCS) provide high resolution data for studying intra-tumor heterogeneity and tumor evolution. Available computational methods for tumor phylogeny inference via SCS typically aim to identify the most likelyperfect phylogeny treesatisfyinginfinite sites assumption(ISA). However limitations of SCS technologies such as frequent allele dropout or highly variable sequence coverage, commonly result in mutational call errors and prohibit a perfect phylogeny. In addition, ISA violations are commonly observed in tumor phylogenies due to the loss of heterozygosity, deletions and convergent evolution. In order to address such limitations, we, for the first time, introduce a new combinatorial formulation that integrates single cell sequencing data with matching bulk sequencing data, with the objective of minimizing a linear combination of (i) potential false negatives (due to e.g. allele dropout or variance in sequence coverage) and (ii) potential false positives (due to e.g. read errors) among mutation calls, as well as (iii) the number of mutations that violate ISA - to define theoptimal sub-perfect phylogeny.Our formulation ensures that several lineage constraints imposed by the use of variant allele frequencies (VAFs, derived from bulk sequence data) are satisfied. We express our formulation both in the form of an integer linear program (ILP) and - for the first time in the context of tumor phylogeny reconstruction - a boolean constraint satisfaction problem (CSP) and solve them by leveraging state-of-the-art ILP/CSP solvers. The resulting method, which we name PhISCS, is the first to integrate SCS and bulk sequencing data under the finite sites model. Using several simulated and real SCS data sets, we demonstrate that PhISCS is not only more general but also more accurate than the alternative tumor phylogeny inference tools. PhISCS is very fast especially when its CSP based variant is used returns the optimal solution, except in rare instances for which it provides an optimality gap. PhISCS is available athttps://github.com/haghshenas/PhISCS.


2019 ◽  
Author(s):  
Ziwei Chen ◽  
Fuzhou Gong ◽  
Liang Ma ◽  
Lin Wan

AbstractSingle-cell sequencing (SCS) data provide unprecedented insights into intratumoral heterogeneity. With SCS, we can better characterize clonal genotypes and build phylogenetic relationships of tumor cells/clones. However, high technical errors bring much noise into the genetic data, thus limiting the application of evolutionary tools in the large reservoir. To recover the low-dimensional subspace of tumor subpopulations from error-prone SCS data in the presence of corrupted and/or missing elements, we developed an efficient computational framework, termed RobustClone, to recover the true genotypes of subclones based on the low-rank matrix factorization method of extended robust principal component analysis (RPCA) and reconstruct the subclonal evolutionary tree. RobustClone is a model-free method, fast and scalable to large-scale datasets. We conducted a set of systematic evaluations on simulated datasets and demonstrated that RobustClone outperforms state-of-the-art methods, both in accuracy and efficiency. We further validated RobustClone on 2 single-cell SNV and 2 single-cell CNV datasets and demonstrated that RobustClone could recover genotype matrix and infer the subclonal evolution tree accurately under various scenarios. In particular, RobustClone revealed the spatial progression patterns of subclonal evolution on the large-scale 10X Genomics scCNV breast cancer dataset. RobustClone software is available at https://github.com/ucasdp/RobustClone.


2020 ◽  
Vol 36 (11) ◽  
pp. 3299-3306
Author(s):  
Ziwei Chen ◽  
Fuzhou Gong ◽  
Lin Wan ◽  
Liang Ma

Abstract Motivation Single-cell sequencing (SCS) data provide unprecedented insights into intratumoral heterogeneity. With SCS, we can better characterize clonal genotypes and reconstruct phylogenetic relationships of tumor cells/clones. However, SCS data are often error-prone, making their computational analysis challenging. Results To infer the clonal evolution in tumor from the error-prone SCS data, we developed an efficient computational framework, termed RobustClone. It recovers the true genotypes of subclones based on the extended robust principal component analysis, a low-rank matrix decomposition method, and reconstructs the subclonal evolutionary tree. RobustClone is a model-free method, which can be applied to both single-cell single nucleotide variation (scSNV) and single-cell copy-number variation (scCNV) data. It is efficient and scalable to large-scale datasets. We conducted a set of systematic evaluations on simulated datasets and demonstrated that RobustClone outperforms state-of-the-art methods in large-scale data both in accuracy and efficiency. We further validated RobustClone on two scSNV and two scCNV datasets and demonstrated that RobustClone could recover genotype matrix and infer the subclonal evolution tree accurately under various scenarios. In particular, RobustClone revealed the spatial progression patterns of subclonal evolution on the large-scale 10X Genomics scCNV breast cancer dataset. Availability and implementation RobustClone software is available at https://github.com/ucasdp/RobustClone. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Salem Malikić ◽  
Farid Rashidi Mehrabadi ◽  
Erfan Sadeqi Azer ◽  
Mohammad Haghir Ebrahimabadi ◽  
S. Cenk Sahinalp

AbstractSingle-cell sequencing data has great potential in reconstructing the evolutionary history of tumors. Rapid advances in single-cell sequencing technology in the past decade were followed by the design of various computational methods for inferring trees of tumor evolution. Some of the earliest of these methods were based on the direct search in the space of trees. However, it can be shown that instead of this tree search strategy we can perform a search in the space of binary matrices and obtain the most likely tree directly from the most likely among the candidate binary matrices. The search in the space of binary matrices can be expressed as an instance of integer linear or constraint satisfaction programming and solved by some of the available solvers, which typically provide a guarantee of optimality of the reported solution. In this review, we first describe one convenient tree representation of tumor evolutionary history and present tree scoring model that is most commonly used in the available methods. We then provide proof showing that the most likely tree of tumor evolution can be obtained directly from the most likely matrix from the space of candidate binary matrices. Next, we provide integer linear programming formulation to search for such matrix and summarize the existing methods based on this formulation or its extensions. Lastly, we present one use-case which illustrates how binary matrices can be used as a basis for developing a fast deep learning method for inferring some topological properties of the most likely tree of tumor evolution.


2019 ◽  
Author(s):  
Helena L. Crowell ◽  
Charlotte Soneson ◽  
Pierre-Luc Germain ◽  
Daniela Calini ◽  
Ludovic Collin ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) has quickly become an empowering technology to profile the transcriptomes of individual cells on a large scale. Many early analyses of differential expression have aimed at identifying differences between subpopulations, and thus are focused on finding subpopulation markers either in a single sample or across multiple samples. More generally, such methods can compare expression levels in multiple sets of cells, thus leading to cross-condition analyses. However, given the emergence of replicated multi-condition scRNA-seq datasets, an area of increasing focus is making sample-level inferences, termed here as differential state analysis. For example, one could investigate the condition-specific responses of cell subpopulations measured from patients from each condition; however, it is not clear which statistical framework best handles this situation. In this work, we surveyed the methods available to perform cross-condition differential state analyses, including cell-level mixed models and methods based on aggregated “pseudobulk” data. We developed a flexible simulation platform that mimics both single and multi-sample scRNA-seq data and provide robust tools for multi-condition analysis within the muscat R package.


2019 ◽  
Author(s):  
Haoyun Lei ◽  
Bochuan Lyu ◽  
E. Michael Gertz ◽  
Alejandro A. Schäffer ◽  
Xulian Shi ◽  
...  

AbstractCharacterizing intratumor heterogeneity (ITH) is crucial to understanding cancer development, but it is hampered by limits of available data sources. Bulk DNA sequencing is the most common technology to assess ITH, but mixes many genetically distinct cells in each sample, which must then be computationally deconvolved. Single-cell sequencing (SCS) is a promising alternative, but its limitations — e.g., high noise, difficulty scaling to large populations, technical artifacts, and large data sets — have so far made it impractical for studying cohorts of sufficient size to identify statistically robust features of tumor evolution. We have developed strategies for deconvolution and tumor phylogenetics combining limited amounts of bulk and single-cell data to gain some advantages of single-cell resolution with much lower cost, with specific focus on deconvolving genomic copy number data. We developed a mixed membership model for clonal deconvolution via non-negative matrix factorization (NMF) balancing deconvolution quality with similarity to single-cell samples via an associated efficient coordinate descent algorithm. We then improve on that algorithm by integrating deconvolution with clonal phylogeny inference, using a mixed integer linear programming (MILP) model to incorporate a minimum evolution phylogenetic tree cost in the problem objective. We demonstrate the effectiveness of these methods on semi-simulated data of known ground truth, showing improved deconvolution accuracy relative to bulk data alone.


2019 ◽  
Author(s):  
Gryte Satas ◽  
Simone Zaccaria ◽  
Geoffrey Mon ◽  
Benjamin J. Raphael

AbstractMotivationSingle-cell DNA sequencing enables the measurement of somatic mutations in individual tumor cells, and provides data to reconstruct the evolutionary history of the tumor. Nearly all existing methods to construct phylogenetic trees from single-cell sequencing data use single-nucleotide variants (SNVs) as markers. However, most solid tumors contain copy-number aberrations (CNAs) which can overlap loci containing SNVs. Particularly problematic are CNAs that delete an SNV, thus returning the SNV locus to the unmutated state. Such mutation losses are allowed in some models of SNV evolution, but these models are generally too permissive, allowing mutation losses without evidence of a CNA overlapping the locus.ResultsWe introduce a novel loss-supported evolutionary model, a generalization of the infinite sites and Dollo models, that constrains mutation losses to loci with evidence of a decrease in copy number. We design a new algorithm, Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of Tumors (Scarlet), that infers phylogenies from single-cell tumor sequencing data using the loss-supported model and a probabilistic model of sequencing errors and allele dropout. On simulated data, we show that Scarlet outperforms current single-cell phylogeny methods, recovering more accurate trees and correcting errors in SNV data. On single-cell sequencing data from a metastatic colorectal cancer patient, Scarlet constructs a phylogeny that is both more consistent with the observed copy-number data and also reveals a simpler monooclonal seeding of the metastasis, contrasting with published reports of polyclonal seeding in this patient. Scarlet substantially improves single-cell phylogeny inference in tumors with CNAs, yielding new insights into the analysis of tumor evolution.AvailabilitySoftware is available at github.com/raphael-group/[email protected]


Sign in / Sign up

Export Citation Format

Share Document