scholarly journals Studying the History of Tumor Evolution from Single-Cell Sequencing Data by Exploring the Space of Binary Matrices

Author(s):  
Salem Malikić ◽  
Farid Rashidi Mehrabadi ◽  
Erfan Sadeqi Azer ◽  
Mohammad Haghir Ebrahimabadi ◽  
Suleyman Cenk Sahinalp
Author(s):  
Salem Malikić ◽  
Farid Rashidi Mehrabadi ◽  
Erfan Sadeqi Azer ◽  
Mohammad Haghir Ebrahimabadi ◽  
S. Cenk Sahinalp

AbstractSingle-cell sequencing data has great potential in reconstructing the evolutionary history of tumors. Rapid advances in single-cell sequencing technology in the past decade were followed by the design of various computational methods for inferring trees of tumor evolution. Some of the earliest of these methods were based on the direct search in the space of trees. However, it can be shown that instead of this tree search strategy we can perform a search in the space of binary matrices and obtain the most likely tree directly from the most likely among the candidate binary matrices. The search in the space of binary matrices can be expressed as an instance of integer linear or constraint satisfaction programming and solved by some of the available solvers, which typically provide a guarantee of optimality of the reported solution. In this review, we first describe one convenient tree representation of tumor evolutionary history and present tree scoring model that is most commonly used in the available methods. We then provide proof showing that the most likely tree of tumor evolution can be obtained directly from the most likely matrix from the space of candidate binary matrices. Next, we provide integer linear programming formulation to search for such matrix and summarize the existing methods based on this formulation or its extensions. Lastly, we present one use-case which illustrates how binary matrices can be used as a basis for developing a fast deep learning method for inferring some topological properties of the most likely tree of tumor evolution.


2016 ◽  
Author(s):  
Jack Kuipers ◽  
Katharina Jahn ◽  
Benjamin J. Raphael ◽  
Niko Beerenwinkel

The infinite sites assumption, which states that every genomic position mutates at most once over the lifetime of a tumor, is central to current approaches for reconstructing mutation histories of tumors, but has never been tested explicitly. We developed a rigorous statistical framework to test the assumption with single-cell sequencing data. The framework accounts for the high noise and contamination present in such data. We found strong evidence for recurrent mutations at the same site in 8 out of 9 single-cell sequencing datasets from human tumors. Six cases involved the loss of earlier mutations, five of which occurred at sites unaffected by large scale genomic deletions. Two cases exhibited parallel mutation, including the dataset with the strongest evidence of recurrence. Our results refute the general validity of the infinite sites assumption and indicate that more complex models are needed to adequately quantify intra-tumor heterogeneity.


2018 ◽  
Author(s):  
Salem Malikic ◽  
Simone Ciccolella ◽  
Farid Rashidi Mehrabadi ◽  
Camir Ricketts ◽  
Khaledur Rahman ◽  
...  

AbstractRecent technological advances in single cell sequencing (SCS) provide high resolution data for studying intra-tumor heterogeneity and tumor evolution. Available computational methods for tumor phylogeny inference via SCS typically aim to identify the most likelyperfect phylogeny treesatisfyinginfinite sites assumption(ISA). However limitations of SCS technologies such as frequent allele dropout or highly variable sequence coverage, commonly result in mutational call errors and prohibit a perfect phylogeny. In addition, ISA violations are commonly observed in tumor phylogenies due to the loss of heterozygosity, deletions and convergent evolution. In order to address such limitations, we, for the first time, introduce a new combinatorial formulation that integrates single cell sequencing data with matching bulk sequencing data, with the objective of minimizing a linear combination of (i) potential false negatives (due to e.g. allele dropout or variance in sequence coverage) and (ii) potential false positives (due to e.g. read errors) among mutation calls, as well as (iii) the number of mutations that violate ISA - to define theoptimal sub-perfect phylogeny.Our formulation ensures that several lineage constraints imposed by the use of variant allele frequencies (VAFs, derived from bulk sequence data) are satisfied. We express our formulation both in the form of an integer linear program (ILP) and - for the first time in the context of tumor phylogeny reconstruction - a boolean constraint satisfaction problem (CSP) and solve them by leveraging state-of-the-art ILP/CSP solvers. The resulting method, which we name PhISCS, is the first to integrate SCS and bulk sequencing data under the finite sites model. Using several simulated and real SCS data sets, we demonstrate that PhISCS is not only more general but also more accurate than the alternative tumor phylogeny inference tools. PhISCS is very fast especially when its CSP based variant is used returns the optimal solution, except in rare instances for which it provides an optimality gap. PhISCS is available athttps://github.com/haghshenas/PhISCS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenhua Yu ◽  
Huidong Liu ◽  
Fang Du ◽  
Xiaofen Tang

Single-cell sequencing (SCS) now promises the landscape of genetic diversity at single cell level, and is particularly useful to reconstruct the evolutionary history of tumor. There are multiple types of noise that make the SCS data notoriously error-prone, and significantly complicate tumor tree reconstruction. Existing methods for tumor phylogeny estimation suffer from either high computational intensity or low-resolution indication of clonal architecture, giving a necessity of developing new methods for efficient and accurate reconstruction of tumor trees. We introduce GRMT (Generative Reconstruction of Mutation Tree from scratch), a method for inferring tumor mutation tree from SCS data. GRMT exploits the k-Dollo parsimony model to allow each mutation to be gained once and lost at most k times. Under this constraint on mutation evolution, GRMT searches for mutation tree structures from a perspective of tree generation from scratch, and implements it to an iterative process that gradually increases the tree size by introducing a new mutation per time until a complete tree structure that contains all mutations is obtained. This enables GRMT to efficiently recover the chronological order of mutations and scale well to large datasets. Extensive evaluations on simulated and real datasets suggest GRMT outperforms the state-of-the-arts in multiple performance metrics. The GRMT software is freely available at https://github.com/qasimyu/grmt.


2019 ◽  
Author(s):  
Haoyun Lei ◽  
Bochuan Lyu ◽  
E. Michael Gertz ◽  
Alejandro A. Schäffer ◽  
Xulian Shi ◽  
...  

AbstractCharacterizing intratumor heterogeneity (ITH) is crucial to understanding cancer development, but it is hampered by limits of available data sources. Bulk DNA sequencing is the most common technology to assess ITH, but mixes many genetically distinct cells in each sample, which must then be computationally deconvolved. Single-cell sequencing (SCS) is a promising alternative, but its limitations — e.g., high noise, difficulty scaling to large populations, technical artifacts, and large data sets — have so far made it impractical for studying cohorts of sufficient size to identify statistically robust features of tumor evolution. We have developed strategies for deconvolution and tumor phylogenetics combining limited amounts of bulk and single-cell data to gain some advantages of single-cell resolution with much lower cost, with specific focus on deconvolving genomic copy number data. We developed a mixed membership model for clonal deconvolution via non-negative matrix factorization (NMF) balancing deconvolution quality with similarity to single-cell samples via an associated efficient coordinate descent algorithm. We then improve on that algorithm by integrating deconvolution with clonal phylogeny inference, using a mixed integer linear programming (MILP) model to incorporate a minimum evolution phylogenetic tree cost in the problem objective. We demonstrate the effectiveness of these methods on semi-simulated data of known ground truth, showing improved deconvolution accuracy relative to bulk data alone.


2020 ◽  
Author(s):  
Ermin Hodzic ◽  
Raunak Shrestha ◽  
Salem Malikic ◽  
Colin C. Collins ◽  
Kevin Litchfield ◽  
...  

AbstractMotivationAs multi-region, time-series, and single cell sequencing data become more widely available, it is becoming clear that certain tumors share evolutionary characteristics with others. In the last few years, several computational methods have been developed with the goal of inferring the subclonal composition and evolutionary history of tumors from tumor biopsy sequencing data. However, the phylogenetic trees that they report differ significantly between tumors (even those with similar characteristics).ResultsIn this paper, we present a novel combinatorial optimization method, CONETT, for detection of recurrent tumor evolution trajectories. Our method constructs a consensus tree of conserved evolutionary trajectories based on the information about temporal order of alteration events in a set of tumors. We apply our method to previously published datasets of 100 clear-cell renal cell carcinoma and 99 non-small-cell lung cancer patients and identify both conserved trajectories that were reported in the original studies, as well as new trajectories.AvailabilityCONETT is implemented in C++ and available at https://github.com/ehodzic/CONETT.


2019 ◽  
Author(s):  
Gryte Satas ◽  
Simone Zaccaria ◽  
Geoffrey Mon ◽  
Benjamin J. Raphael

AbstractMotivationSingle-cell DNA sequencing enables the measurement of somatic mutations in individual tumor cells, and provides data to reconstruct the evolutionary history of the tumor. Nearly all existing methods to construct phylogenetic trees from single-cell sequencing data use single-nucleotide variants (SNVs) as markers. However, most solid tumors contain copy-number aberrations (CNAs) which can overlap loci containing SNVs. Particularly problematic are CNAs that delete an SNV, thus returning the SNV locus to the unmutated state. Such mutation losses are allowed in some models of SNV evolution, but these models are generally too permissive, allowing mutation losses without evidence of a CNA overlapping the locus.ResultsWe introduce a novel loss-supported evolutionary model, a generalization of the infinite sites and Dollo models, that constrains mutation losses to loci with evidence of a decrease in copy number. We design a new algorithm, Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of Tumors (Scarlet), that infers phylogenies from single-cell tumor sequencing data using the loss-supported model and a probabilistic model of sequencing errors and allele dropout. On simulated data, we show that Scarlet outperforms current single-cell phylogeny methods, recovering more accurate trees and correcting errors in SNV data. On single-cell sequencing data from a metastatic colorectal cancer patient, Scarlet constructs a phylogeny that is both more consistent with the observed copy-number data and also reveals a simpler monooclonal seeding of the metastasis, contrasting with published reports of polyclonal seeding in this patient. Scarlet substantially improves single-cell phylogeny inference in tumors with CNAs, yielding new insights into the analysis of tumor evolution.AvailabilitySoftware is available at github.com/raphael-group/[email protected]


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A520-A520
Author(s):  
Son Pham ◽  
Tri Le ◽  
Tan Phan ◽  
Minh Pham ◽  
Huy Nguyen ◽  
...  

BackgroundSingle-cell sequencing technology has opened an unprecedented ability to interrogate cancer. It reveals significant insights into the intratumoral heterogeneity, metastasis, therapeutic resistance, which facilitates target discovery and validation in cancer treatment. With rapid advancements in throughput and strategies, a particular immuno-oncology study can produce multi-omics profiles for several thousands of individual cells. This overflow of single-cell data poses formidable challenges, including standardizing data formats across studies, performing reanalysis for individual datasets and meta-analysis.MethodsN/AResultsWe present BioTuring Browser, an interactive platform for accessing and reanalyzing published single-cell omics data. The platform is currently hosting a curated database of more than 10 million cells from 247 projects, covering more than 120 immune cell types and subtypes, and 15 different cancer types. All data are processed and annotated with standardized labels of cell types, diseases, therapeutic responses, etc. to be instantly accessed and explored in a uniform visualization and analytics interface. Based on this massive curated database, BioTuring Browser supports searching similar expression profiles, querying a target across datasets and automatic cell type annotation. The platform supports single-cell RNA-seq, CITE-seq and TCR-seq data. BioTuring Browser is now available for download at www.bioturing.com.ConclusionsN/A


Sign in / Sign up

Export Citation Format

Share Document