scholarly journals From Sequence to Function: Coevolving Amino Acids Encode Structural and Functional Domains

2017 ◽  
Author(s):  
Daniele Granata ◽  
Luca Ponzoni ◽  
Cristian Micheletti ◽  
Vincenzo Carnevale

Amino acids interactions within protein families are so optimized that the sole analysis of evolutionary co-mutations can identify pairs of contacting residues. It is also known that evolution conserves functional dynamics, i.e., the concerted motion or displacement of large protein regions or domains. Is it, therefore, possible to use a pure sequence-based analysis to identify these dynamical domains? To address this question, we introduce here a general co-evolutionary coupling analysis strategy and apply it to a curated sequence database of hundreds of protein families. For most families, the sequence-based method partitions amino acids into few clusters. When viewed in the context of the native structure, these clusters have the signature characteristics of viable protein domains: they are spatially separated but individually compact. They have a direct functional bearings too, as shown for various reference cases. We conclude that even large-scale structural and functionally-related properties can be recovered from inference methods applied to evolutionary-related sequences. The method introduced here is available as a software package and web server (http://spectrus.sissa.it/spectrus-evo_webserver).

2017 ◽  
Vol 114 (50) ◽  
pp. E10612-E10621 ◽  
Author(s):  
Daniele Granata ◽  
Luca Ponzoni ◽  
Cristian Micheletti ◽  
Vincenzo Carnevale

Patterns of interacting amino acids are so preserved within protein families that the sole analysis of evolutionary comutations can identify pairs of contacting residues. It is also known that evolution conserves functional dynamics, i.e., the concerted motion or displacement of large protein regions or domains. Is it, therefore, possible to use a pure sequence-based analysis to identify these dynamical domains? To address this question, we introduce here a general coevolutionary coupling analysis strategy and apply it to a curated sequence database of hundreds of protein families. For most families, the sequence-based method partitions amino acids into a few clusters. When viewed in the context of the native structure, these clusters have the signature characteristics of viable protein domains: They are spatially separated but individually compact. They have a direct functional bearing too, as shown for various reference cases. We conclude that even large-scale structural and functionally related properties can be recovered from inference methods applied to evolutionary-related sequences. The method introduced here is available as a software package and web server (spectrus.sissa.it/spectrus-evo_webserver).


2018 ◽  
Author(s):  
Roc Reguant ◽  
Yevgeniy Antipin ◽  
Rob Sheridan ◽  
Augustin Luna ◽  
Chris Sander

AbstractSummaryAlignmentViewer is multiple sequence alignment viewer for protein families with flexible visualization, analysis tools and links to protein family databases. It is directly accessible in web browsers without the need for software installation, as it is implemented in JavaScript, and does not require an internet connection to function. It can handle protein families with tens of thousands of sequences and is particularly suitable for evolutionary coupling analysis, facilitating the computation of protein 3D structures and the detection of functionally constrained interactions.Availability and ImplementationAlignmentViewer is open source software under the MIT license. The viewer is at http://alignmentviewer.org and the source code, documentation and issue tracking, for co-development, are at https://github.com/dfci/[email protected], reaches all authors


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 213 ◽  
Author(s):  
Roc Reguant ◽  
Yevgeniy Antipin ◽  
Rob Sheridan ◽  
Christian Dallago ◽  
Drew Diamantoukos ◽  
...  

AlignmentViewer is a web-based tool to view and analyze multiple sequence alignments of protein families. The particular strengths of AlignmentViewer include flexible visualization at different scales as well as analysis of conservation patterns and of the distribution of proteins in sequence space. The tool is directly accessible in web browsers without the need for software installation. It can handle protein families with tens of thousands of sequences and is particularly suitable for evolutionary coupling analysis, e.g. via EVcouplings.org.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 213
Author(s):  
Roc Reguant ◽  
Yevgeniy Antipin ◽  
Rob Sheridan ◽  
Christian Dallago ◽  
Drew Diamantoukos ◽  
...  

AlignmentViewer is a web-based tool to view and analyze multiple sequence alignments of protein families. The particular strengths of AlignmentViewer include flexible visualization at different scales as well as analysis of conservation patterns and of the distribution of proteins in sequence space. The tool is directly accessible in web browsers without the need for software installation. It can handle protein families with tens of thousands of sequences and is particularly suitable for evolutionary coupling analysis, e.g. via EVcouplings.org.


2019 ◽  
Author(s):  
Yongzheng Ding ◽  
Shuai Fan ◽  
Xiaoxi Chen ◽  
yuzhen gao ◽  
Gang Li

A Pdᴵᴵ-catalyzed, ligand-enabled gamma-C(sp3)–H arylation of free primary aliphatic amines and amino esters without using an exogenous directing group is reported. This reaction is compatible with unhindered free aliphatic amines, and it is also be applicable to the rapid synthesis of biologically and synthetically valuable unnatural α-amino acids. Large scale synthesis is also feasible using this method.<br>


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Abstract According to the amino acid composition of natural proteins, it could be expected that all possible sequences of three or four amino acids will occur at least once in large protein datasets purely by chance. However, in some species or cellular context, specific short amino acid motifs are missing due to unknown reasons. We describe these as Avoided Motifs, short amino acid combinations missing from biological sequences. Here we identify 209 human and 154 bacterial Avoided Motifs of length four amino acids, and discuss their possible functionality according to their presence in other species. Furthermore, we determine two Avoided Motifs of length three amino acids in human proteins specifically located in the cytoplasm, and two more in secreted proteins. Our results support the hypothesis that the characterization of Avoided Motifs in particular contexts can provide us with information about functional motifs, pointing to a new approach in the use of molecular sequences for the discovery of protein function.


2021 ◽  
Vol 9 (6) ◽  
pp. 1110
Author(s):  
Ángel Córcoles García ◽  
Peter Hauptmann ◽  
Peter Neubauer

Insufficient mixing in large-scale bioreactors provokes gradient zones of substrate, dissolved oxygen (DO), pH, and other parameters. E. coli responds to a high glucose, low oxygen feeding zone with the accumulation of mixed acid fermentation products, especially formate, but also with the synthesis of non-canonical amino acids, such as norvaline, norleucine and β-methylnorleucine. These amino acids can be mis-incorporated into recombinant products, which causes a problem for pharmaceutical production whose solution is not trivial. While these effects can also be observed in scale down bioreactor systems, these are challenging to operate. Especially the high-throughput screening of clone libraries is not easy, as fed-batch cultivations would need to be controlled via repeated glucose pulses with simultaneous oxygen limitation, as has been demonstrated in well controlled robotic systems. Here we show that not only glucose pulses in combination with oxygen limitation can provoke the synthesis of these non-canonical branched-chain amino acids (ncBCAA), but also that pyruvate pulses produce the same effect. Therefore, we combined the enzyme-based glucose delivery method Enbase® in a PALL24 mini-bioreactor system and combined repeated pyruvate pulses with simultaneous reduction of the aeration rate. These cultivation conditions produced an increase in the non-canonical branched chain amino acids norvaline and norleucine in both the intracellular soluble protein and inclusion body fractions with mini-proinsulin as an example product, and this effect was verified in a 15 L stirred tank bioreactor (STR). To our opinion this cultivation strategy is easy to apply for the screening of strain libraries under standard laboratory conditions if no complex robotic and well controlled parallel cultivation devices are available.


2007 ◽  
Vol 72 (23) ◽  
pp. 8932-8934 ◽  
Author(s):  
Guanghui Deng ◽  
Jiang Wang ◽  
Yu Zhou ◽  
Hualiang Jiang ◽  
Hong Liu

Sign in / Sign up

Export Citation Format

Share Document