scholarly journals Defining marine microbial biomes from environmental and dispersal filtered metapopulations

2017 ◽  
Author(s):  
Markus V. Lindh

SummaryEnergy and matter fluxes essential for all life1 are modulated by spatial and temporal shifts in microbial community structure resulting from environmental and dispersal filtering2,3, emphasizing the continued need to characterize microbial biogeography4,5. Yet, application of metapopulation theory, traditionally used in general ecology for understanding shifts in biogeographical patterns among macroorganisms, has not been tested extensively for defining marine microbial populations filtered by environmental conditions and dispersal limitation at global ocean scales. Here we show, from applying metapopulation theory on two major global ocean datasets6,7, that microbial populations exhibit core- and satellite distributions with cosmopolitan compared to geographically restricted distributions of populations. We found significant bimodal occupancy-frequency patterns (the different number of species occupying different number of patches) at varying spatial scales, where shifts from bimodal to unimodal patterns indicated environmental and dispersal filtering. Such bimodal occupancy-frequency patterns were validated in Longhurst’s classical biogeographical framework and in silico where observed bimodal patterns often aligned with specific biomes and provinces described by Longhurst and where found to be non-random in randomized datasets and mock communities. Taken together, our results show that application of metapopulation theory provides a framework for determining distinct microbial biomes maintained by environmental and dispersal filtering.

2018 ◽  
Vol 15 (12) ◽  
pp. 3909-3925 ◽  
Author(s):  
Nicholas Bock ◽  
France Van Wambeke ◽  
Moïra Dion ◽  
Solange Duhamel

Abstract. Oligotrophic regions play a central role in global biogeochemical cycles, with microbial communities in these areas representing an important term in global carbon budgets. While the general structure of microbial communities has been well documented in the global ocean, some remote regions such as the western tropical South Pacific (WTSP) remain fundamentally unexplored. Moreover, the biotic and abiotic factors constraining microbial abundances and distribution remain not well resolved. In this study, we quantified the spatial (vertical and horizontal) distribution of major microbial plankton groups along a transect through the WTSP during the austral summer of 2015, capturing important autotrophic and heterotrophic assemblages including cytometrically determined abundances of non-pigmented protists (also called flagellates). Using environmental parameters (e.g., nutrients and light availability) as well as statistical analyses, we estimated the role of bottom–up and top–down controls in constraining the structure of the WTSP microbial communities in biogeochemically distinct regions. At the most general level, we found a “typical tropical structure”, characterized by a shallow mixed layer, a clear deep chlorophyll maximum at all sampling sites, and a deep nitracline. Prochlorococcus was especially abundant along the transect, accounting for 68 ± 10.6 % of depth-integrated phytoplankton biomass. Despite their relatively low abundances, picophytoeukaryotes (PPE) accounted for up to 26 ± 11.6 % of depth-integrated phytoplankton biomass, while Synechococcus accounted for only 6 ± 6.9 %. Our results show that the microbial community structure of the WTSP is typical of highly stratified regions, and underline the significant contribution to total biomass by PPE populations. Strong relationships between N2 fixation rates and plankton abundances demonstrate the central role of N2 fixation in regulating ecosystem processes in the WTSP, while comparative analyses of abundance data suggest microbial community structure to be increasingly regulated by bottom–up processes under nutrient limitation, possibly in response to shifts in abundances of high nucleic acid bacteria (HNA).


Author(s):  
Yong Li ◽  
Jiejie Zhang ◽  
Jianqiang Zhang ◽  
Wenlai Xu ◽  
Zishen Mou

To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3–V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.


2013 ◽  
Vol 7 (1) ◽  
pp. 99-117 ◽  
Author(s):  
T.F. Ducey ◽  
P.R. Johnson ◽  
A.D. Shriner ◽  
T.A. Matheny ◽  
P.G. Hunt

Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.


Wetlands ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 1367-1377
Author(s):  
N. T. Girkin ◽  
R. A. Lopes dos Santos ◽  
C. H. Vane ◽  
N. Ostle ◽  
B. L. Turner ◽  
...  

Abstract Tropical peatlands are an important carbon store and source of greenhouse gases, but the microbial component, particularly community structure, remains poorly understood. While microbial communities vary between tropical peatland land uses, and with biogeochemical gradients, it is unclear if their structure varies at smaller spatial scales as has been established for a variety of peat properties. We assessed the abundances of PLFAs and GDGTs, two membrane spanning lipid biomarkers in bacteria and fungi, and bacteria and archaea, respectively, to characterise peat microbial communities under two dominant and contrasting plant species, Campnosperma panamensis (a broadleaved evergreen tree), and Raphia taedigera (a canopy palm), in a Panamanian tropical peatland. The plant communities supported similar microbial communities dominated by Gram negative bacteria (38.9–39.8%), with smaller but significant fungal and archaeal communities. The abundance of specific microbial groups, as well as the ratio of caldarchaeol:crenarchaeol, isoGDGT: brGDGTs and fungi:bacteria were linearly related to gravimetric moisture content, redox potential, pH and organic matter content indicating their role in regulating microbial community structure. These results suggest that tropical peatlands can exhibit significant variability in microbial community abundance even at small spatial scales, driven by both peat botanical origin and localised differences in specific peat properties.


2018 ◽  
Author(s):  
Nicholas Bock ◽  
France Van Wambeke ◽  
Moïra Dion ◽  
Solange Duhamel

Abstract. Accounting for 40 percent of the earth's surface, oligotrophic regions play an important role in global biogeochemical cycles, with microbial communities in these areas representing an important term in global carbon budgets. While the general structure of microbial communities has been well documented in the global ocean, some remote regions such as the Western Tropical South Pacific (WTSP), remain fundamentally unexplored. Moreover, the biotic and abiotic factors constraining microbial abundances and distribution remain not-well resolved. In this study, we quantified the spatial (vertical and horizontal) distribution of major microbial plankton groups along a transect through the WTSP during the austral summer of 2015, capturing important autotrophic and heterotrophic assemblages including cytometrically determined abundances of non-pigmented protists (also called flagellates). Using environmental parameters (e.g. nutrients and light availability) as well as statistical analyses, we estimated the role of bottom-up and top-down controls in constraining the structure of the WTSP microbial communities in biogeochemically distinct regions. At the most general level, we found a typical tropical structure, characterized by high abundances of Prochlorococcus at the surface, a clear deep chlorophyll maximum at all sampling sites, and a deep nitracline. Despite their relatively low abundances, picophytoeukaryotes (PPE) accounted for up to half of depth-integrated phytoplankton biomass in the lower euphotic zone. While present at all stations, Synechococcus accounted for only 2 % and 4 % of total phytoplankton abundance and biomass, respectively. Our results show that the microbial community structure of the WTSP is typical of highly stratified regions, and underline the significant contribution to total biomass by PPE populations. Strong relationships between N2 fixation rates and plankton abundances demonstrate the central role of N2 fixation in regulating ecosystem processes in the WTSP, while comparative analyses of abundance data suggest microbial community structure to be increasingly regulated by bottom-up processes under nutrient limitation, possibly in response to shifts in abundances of high nucleic acid bacteria (HNA).


2009 ◽  
Vol 27 (4) ◽  
pp. 385-387
Author(s):  
W. D. Eaton ◽  
B. Wilmot ◽  
E. Epler ◽  
S. Mangiamelli ◽  
D. Barry

Sign in / Sign up

Export Citation Format

Share Document