scholarly journals Microbial Community Structure Across a Wastewater-Impacted Riparian Buffer Zone in the Southeastern Coastal Plain

2013 ◽  
Vol 7 (1) ◽  
pp. 99-117 ◽  
Author(s):  
T.F. Ducey ◽  
P.R. Johnson ◽  
A.D. Shriner ◽  
T.A. Matheny ◽  
P.G. Hunt

Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.

2001 ◽  
Vol 67 (10) ◽  
pp. 4619-4629 ◽  
Author(s):  
Wilfred F. M. Röling ◽  
Boris M. van Breukelen ◽  
Martin Braster ◽  
Bin Lin ◽  
Henk W. van Verseveld

ABSTRACT Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria andArchaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria(β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax,Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the familyGeobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria areGeobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.


2017 ◽  
Author(s):  
Markus V. Lindh

SummaryEnergy and matter fluxes essential for all life1 are modulated by spatial and temporal shifts in microbial community structure resulting from environmental and dispersal filtering2,3, emphasizing the continued need to characterize microbial biogeography4,5. Yet, application of metapopulation theory, traditionally used in general ecology for understanding shifts in biogeographical patterns among macroorganisms, has not been tested extensively for defining marine microbial populations filtered by environmental conditions and dispersal limitation at global ocean scales. Here we show, from applying metapopulation theory on two major global ocean datasets6,7, that microbial populations exhibit core- and satellite distributions with cosmopolitan compared to geographically restricted distributions of populations. We found significant bimodal occupancy-frequency patterns (the different number of species occupying different number of patches) at varying spatial scales, where shifts from bimodal to unimodal patterns indicated environmental and dispersal filtering. Such bimodal occupancy-frequency patterns were validated in Longhurst’s classical biogeographical framework and in silico where observed bimodal patterns often aligned with specific biomes and provinces described by Longhurst and where found to be non-random in randomized datasets and mock communities. Taken together, our results show that application of metapopulation theory provides a framework for determining distinct microbial biomes maintained by environmental and dispersal filtering.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhourui Liang ◽  
Fuli Liu ◽  
Wenjun Wang ◽  
Pengyan Zhang ◽  
Xiutao Sun ◽  
...  

Abstract Background Caulerpa lentillifera is one of the most important economic green macroalgae in the world. Increasing demand for consumption has led to the commercial cultivation of C. lentillifera in Japan and Vietnam in recent decades. Concomitant with the increase of C. lentillifera cultivation is a rise in disease. We hypothesise that epiphytes or other microorganisms outbreak at the C. lentillifera farm may be an important factor contributing to disease in C. lentillifera. The main aims are obtaining differences in the microbial community structure and diversity between healthy and diseased C. lentillifera and key epiphytes and other microorganisms affecting the differences through the results of high-throughput sequencing and bioinformatics analysis in the present study. Results A total of 14,050, 2479, and 941 operational taxonomic units (OTUs) were obtained from all samples using 16S rDNA, 18S rDNA, and internal transcribed spacer (ITS) high-throughput sequencing, respectively. 16S rDNA sequencing and 18S rDNA sequencing showed that microbial community diversity was higher in diseased C. lentillifera than in healthy C. lentillifera. Both PCoA results and UPGMA results indicated that the healthy and diseased algae samples have characteristically different microbial communities. The predominant prokaryotic phyla were Proteobacteria, Planctomycetes, Bacteroidetes, Cyanobacteria, Acidobacteria, Acidobacteria and Parcubacteria in all sequences. Chlorophyta was the most abundant eukaryotic phylum followed by Bacillariophyta based on 18S rDNA sequencing. Ascomycota was the dominant fungal phylum detected in healthy C. lentillifera based on ITS sequencing, whereas fungi was rare in diseased C. lentillifera, suggesting that Ascomycota was probably fungal endosymbiont in healthy C. lentillifera. There was a significantly higher abundance of Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis in diseased C. lentillifera than in healthy C. lentillifera. Disease outbreaks significantly change carbohydrate metabolism, environmental information processing and genetic information processing of prokaryotic communities in C. lentillifera through predicted functional analyses using the Tax4Fun tool. Conclusions Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis outbreak at the C. lentillifera farm sites was an important factor contributing to disease in C. lentillifera.


Author(s):  
Yong Li ◽  
Jiejie Zhang ◽  
Jianqiang Zhang ◽  
Wenlai Xu ◽  
Zishen Mou

To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3–V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.


2007 ◽  
Vol 44 (2) ◽  
pp. 40-50
Author(s):  
Koji KAKUGAWA ◽  
Satoru IJIRI ◽  
Kimitaka NAKANO ◽  
Shinya YAMAUCHI ◽  
Yoshinobu TSUCHIYA

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7876
Author(s):  
Kazuki Kobayashi ◽  
Hideki Aoyagi

Background The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark. Methods In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed. Results At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and candidate division FBP, which contain many uncultured microbial species, existed in the A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, some genera belonging to the phyla mentioned were detected. A total of 70 isolates could be isolated and cultured using the low-nutrient agar media DR2A and PE03. Strains belonging to the phylum Actinobacteria were isolated most frequently. In addition, the newly identified bacterial strain IAP-33, presumed to belong to Acidobacteria, was isolated on PE03 medium. Of the isolated bacteria, 44 strains demonstrated less than 97% 16S rDNA sequence-similarity with type strains. Molecular phylogenetic analysis of IAD-21 showed the lowest similarity (79%), and analyses suggested it belongs to candidate division FBP. Culture of the strain IAD-21 was deposited in Japan Collection of Microorganisms (JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as JCM 32665 and DSM 108248, respectively. Discussion Our results suggest that a variety of uncultured microorganisms exist in A. palmatum bark. Microorganisms acquirable from the bark may prove valuable for academic pursuits, such as studying microbial ecology, and the bark might be a promising source of uncultured bacterial isolates.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 615-622 ◽  
Author(s):  
V. Kuusemets ◽  
Ü Mander ◽  
K. Lõhmus ◽  
M. Ivask

The study of purification efficiency and nutrient assimilation in plants was made in two riparian buffer zones with a complex of wet meadow and grey alder (Alnus incana) stand. In the less polluted Porijõgi test site, the 31 m wide buffer zone removed 40% of total nitrogen (total-N) and 78% of total phosphorus (total-P), while a heavily polluted 51 m wide buffer zone in Viiratsi retained 85% of total-N and 84% of total-P. The input of nutrients and purification efficiency displayed a significant relationship. The total-N removal in buffer zone was negative when the input value was less than 0.3 mg l-1 and the purification efficiency was always positive when the input value exceeded 5 mg l-1. The purification efficiency of total-P was positive when the input value exceeded 0.15 mg l-1. Grass vegetation plays an important role in nutrient retention in riparian buffer strips. The maximum phytomass production was measured in Porijõgi site where production of the Filipendula ulmaria community was up to 2,358 g m-2, assimilation of N 32.1 and of P 4.9 g m-2, respectively. This is much higher than the biomass production and N and P uptake of the grey alders (Alnus incana) at the same site - 1,730, 20.5 and 1.5 g m-2, respectively.


Sign in / Sign up

Export Citation Format

Share Document