scholarly journals Theory on the rate equation of Michaelis-Menten type single-substrate enzyme catalyzed reactions

2017 ◽  
Author(s):  
Rajamanickam Murugan

AbstractAnalytical solution to the Michaelis-Menten (MM) rate equations for single-substrate enzyme catalysed reaction is not known. Here we introduce an effective scaling scheme and identify the critical parameters which can completely characterize the entire dynamics of single substrate MM enzymes. Using this scaling framework, we reformulate the differential rate equations of MM enzymes over velocity-substrate, velocity-product, substrate-product and velocity-substrate-product spaces and obtain various approximations for both pre- and post-steady state dynamical regimes. Using this framework, under certain limiting conditions we successfully compute the timescales corresponding to steady state, pre- and post-steady states and also compute the approximate steady state values of velocity, substrate and product. We further define the dynamical efficiency of MM enzymes as the ratio between the reaction path length in the velocity-substrate-product space and the average reaction time required to convert the entire substrate into product. Here dynamical efficiency characterizes the phase-space dynamics and it would tell us how fast an enzyme can clear a harmful substrate from the environment. We finally perform a detailed error level analysis over various pre- and post-steady state approximations along with the already existing quasi steady state approximations and progress curve models and discuss the positive and negative points corresponding to various steady state and progress curve models.

1969 ◽  
Vol 47 (9) ◽  
pp. 889-894 ◽  
Author(s):  
Arthur R. Schulz ◽  
Donald D. Fisher

A computer-based method for the derivation of rate equations of enzyme-catalyzed reactions under steady-state assumptions is presented. This method is based on the description of the reaction mechanism in terms of a connection matrix. The utility of the method is demonstrated by applying it to complete the derivation of rate equations of multireactant enzymic mechanisms with modifiers as discussed by Henderson.


2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis--Menten reaction mechanism. The sequential reaction consists of a single-substrate, single-enzyme non-observable reaction followed by another single-substrate, single-enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis--Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis--Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis-Menten reaction mechanism. The sequential reaction consists of a single-substrate, single enzyme non-observable reaction followed by another single-substrate, single enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis-Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis-Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


1970 ◽  
Vol 48 (8) ◽  
pp. 922-934 ◽  
Author(s):  
Arthur R. Schulz ◽  
Donald D. Fisher

A computer-based method is employed for the reformulation of rate equations for enzyme-catalyzed reactions from the coefficient form to the kinetic form. This method is applied to equations for the initial rate of enzyme-catalyzed isotope exchange. In the reformulated equations, the coefficients of each rate equation term are expressed as maximum velocity of the initial rate of the net reaction, Michaelis constants, inhibition constants, and exchange constants. The definition of the exchange constant for a given reactant may be identical to one of the inhibition constants for that reactant.


Author(s):  
Athel Cornish-Bowden

All of chemical kinetics is based on rate equations, but this is especially true of steady-state enzyme kinetics: in other applications a rate equation can be regarded as a differential equation that has to be integrated to give the function of real interest, whereas in steady-state enzyme kinetics it is used as it stands. Although the early enzymologists tried to follow the usual chemical practice of deriving equations that describe the state of reaction as a function of time there were too many complications, such as loss of enzyme activity, effects of accumulating product etc., for this to be a fruitful approach. Rapid progress only became possible when Michaelis and Menten (1) realized that most of the complications could be removed by extrapolating back to zero time and regarding the measured initial rate as the primary observation. Since then, of course, accumulating knowledge has made it possible to study time courses directly, and this has led to two additional subdisciplines of enzyme kinetics, transient-state kinetics, which deals with the time regime before a steady state is established, and progress-curve analysis, which deals with the slow approach to equilibrium during the steady-state phase. The former of these has achieved great importance but is regarded as more specialized. It is dealt with in later chapters of this book. Progress-curve analysis has never recovered the importance that it had at the beginning of the twentieth century. Nearly all steps that form parts of the mechanisms of enzyme-catalysed reactions involve reactions of a single molecule, in which case they typically follow first-order kinetics: . . . v = ka . . . . . . 1 . . . or they involve two molecules (usually but not necessarily different from one another) and typically follow second-order kinetics: . . . v = kab . . . . . . 2 . . . In both cases v represents the rate of reaction, and a and b are the concentrations of the molecules involved, and k is a rate constant. Because we shall be regarding the rate as a quantity in its own right it is not usual in steady-state kinetics to represent it as a derivative such as -da/dt.


Sign in / Sign up

Export Citation Format

Share Document