scholarly journals Sex- and genotype-effects on nutrient-dependent fitness landscapes in Drosophila melanogaster

2017 ◽  
Author(s):  
M. Florencia Camus ◽  
Kevin Fowler ◽  
Matthew W.D. Piper ◽  
Max Reuter

AbstractThe sexes perform different reproductive roles and have evolved sometimes strikingly different phenotypes. One focal point of adaptive divergence occurs in the context of diet and metabolism, and males and females of a range of species have been shown to require different nutrients to maximise their fitness. Biochemical analyses in Drosophila melanogaster have confirmed that dimorphism in dietary requirements is associated with molecular sex-differences in metabolite titres. In addition, they also showed significant within-sex genetic variation in the metabolome. To date however, it is unknown whether this metabolic variation translates into differences in reproductive fitness. The answer to this question is crucial to establish whether genetic variation is selectively neutral or indicative of constraints on sex-specific physiological adaptation and optimisation. Here we assay genetic variation in consumption and metabolic fitness effects by screening male and female fitness of thirty D. melanogaster genotypes across four protein-to-carbohydrate ratios. In addition to confirming sexual dimorphism in consumption and fitness, we find significant genetic variation in male and female dietary requirements. Importantly, these differences are not explained by feeding responses and most likely reflect metabolic variation that, in turn, suggest the presence of genetic constraints on metabolic dimorphism.

2017 ◽  
Vol 284 (1869) ◽  
pp. 20172237 ◽  
Author(s):  
M. Florencia Camus ◽  
Kevin Fowler ◽  
Matthew W. D. Piper ◽  
Max Reuter

The sexes perform different reproductive roles and have evolved sometimes strikingly different phenotypes. One focal point of adaptive divergence occurs in the context of diet and metabolism, and males and females of a range of species have been shown to require different nutrients to maximize their fitness. Biochemical analyses in Drosophila melanogaster have confirmed that dimorphism in dietary requirements is associated with molecular sex differences in metabolite titres. In addition, they also showed significant within-sex genetic variation in the metabolome. To date however, it is unknown whether this metabolic variation translates into differences in reproductive fitness. The answer to this question is crucial to establish whether genetic variation is selectively neutral or indicative of constraints on sex-specific physiological adaptation and optimization. Here we assay genetic variation in consumption and metabolic fitness effects by screening male and female fitness of thirty D. melanogaster genotypes across four protein-to-carbohydrate ratios. In addition to confirming sexual dimorphism in consumption and fitness, we find significant genetic variation in male and female dietary requirements. Importantly, these differences are not explained by feeding responses and probably reflect metabolic variation that, in turn, suggests the presence of genetic constraints on metabolic dimorphism.


2021 ◽  
Author(s):  
Greg M. Walter ◽  
Delia Terranova ◽  
James Clark ◽  
Salvatore Cozzolino ◽  
Antonia Cristaudo ◽  
...  

AbstractGenetic correlations between traits are expected to constrain the rate of adaptation by concentrating genetic variation in certain phenotypic directions, which are unlikely to align with the direction of selection in novel environments. However, if genotypes vary in their response to novel environments, then plasticity could create changes in genetic variation that will determine whether genetic constraints to adaptation arise. We tested this hypothesis by mating two species of closely related, but ecologically distinct, Sicilian daisies (Senecio, Asteraceae) using a quantitative genetics breeding design. We planted seeds of both species across an elevational gradient that included the native habitat of each species and two intermediate elevations, and measured eight leaf morphology and physiology traits on established seedlings. We detected large significant changes in genetic variance across elevation and between species. Elevational changes in genetic variance within species were greater than differences between the two species. Furthermore, changes in genetic variation across elevation aligned with phenotypic plasticity. These results suggest that to understand adaptation to novel environments we need to consider how genetic variance changes in response to environmental variation, and the effect of such changes on genetic constraints to adaptation and the evolution of plasticity.


Genetics ◽  
2006 ◽  
Vol 175 (3) ◽  
pp. 1465-1477 ◽  
Author(s):  
Brad Foley ◽  
Stephen F. Chenoweth ◽  
Sergey V. Nuzhdin ◽  
Mark W. Blows

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genetics ◽  
1981 ◽  
Vol 97 (3-4) ◽  
pp. 607-623 ◽  
Author(s):  
J B Boyd ◽  
M D Golino ◽  
K E S Shaw ◽  
C J Osgood ◽  
M M Green

ABSTRACT A total of 34 third chromosomes of Drosophila melanogaster that render homozygous larvae hypersensitive to killing by chemical mutagens have been isolated. Genetic analyses have placed responsible mutations in more than eleven complementation groups. Mutants in three complementation groups are strongly sensitive to methyl methanesulfonate, those in one are sensitive to nitrogen mustard, and mutants in six groups are hypersensitive to both mutagens. Eight of the ten loci mapped fall within 15% of the genetic map that encompasses the centromere of chromosome 3. Mutants from four of the complementation groups are associated with moderate to strong meiotic effects in females. Preliminary biochemical analyses have implicated seven of these loci in DNA metabolism.


Science ◽  
1958 ◽  
Vol 127 (3296) ◽  
pp. 473-474 ◽  
Author(s):  
W. D. KAPLAN ◽  
J. T. HOLDEN ◽  
B. HOCHMAN

Sign in / Sign up

Export Citation Format

Share Document