scholarly journals Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs

2017 ◽  
Author(s):  
Juan P. Ramírez-Mahaluf ◽  
Joan Perramon ◽  
Begonya Otal ◽  
Pablo Villoslada ◽  
Albert Compte

AbstractThe regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. We hypothesized that this paradigm would enhance the modularity of emotional and cognitive networks and reveal the hub areas that regulate the flow of information between them. By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one cognitive and one emotional, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.

2021 ◽  
Vol 2 ◽  
Author(s):  
Natalie R. Osborne ◽  
Dimitri J. Anastakis ◽  
Junseok Andrew Kim ◽  
Rima El-Sayed ◽  
Joshua C. Cheng ◽  
...  

The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


Sign in / Sign up

Export Citation Format

Share Document