scholarly journals Comparison of decision-related signals in sensory and motor preparatory responses of neurons in Area LIP

2017 ◽  
Author(s):  
S. Shushruth ◽  
Mark Mazurek ◽  
Michael N. Shadlen

ABSTRACTNeurons in the lateral intraparietal area (LIP) of Macaques exhibit both sensory and oculomotor preparatory responses. During perceptual decision making, the preparatory responses have been shown to track the state of the evolving evidence leading to the decision. The sensory responses are known to reflect categorical properties of visual stimuli, but it is not known if these responses also track evolving evidence. We compared sensory and oculomotor-preparatory responses in the same neurons during a direction discrimination task when either the discriminandum (random dot motion) or an eye movement choice-target was in the neuron’s response field. Both configurations elicited task related activity, but only the motor preparatory responses reflected evidence accumulation. The results are consistent with the proposal that evolving decision processes are supported by persistent neural activity in the service of actions or intentions, as opposed to high order representations of stimulus properties.SIGNIFICANCE STATEMENTPerceptual decision making is the process of choosing an appropriate motor action based on perceived sensory information. Association areas of the cortex play an important role in this sensory-motor transformation. The neurons in these areas show both sensory- and motor-related activity. We show here that, in the macaque parietal association area LIP, signatures of the process of evidence accumulation that underlies the decisions are predominantly reflected in the motor-related activity. This finding supports the proposal that perceptual decision making is implemented in the brain as a process of choosing between available motor actions rather than as a process of representing the properties of the sensory stimulus.

2021 ◽  
Author(s):  
Matthijs N Oude Lohuis ◽  
Jean L Pie ◽  
Pietro Marchesi ◽  
Jorrit S Montijn ◽  
Christiaan P J de Kock ◽  
...  

The transformation of sensory inputs into behavioral outputs is characterized by an interplay between feedforward and feedback operations in cortical hierarchies. Even in simple sensorimotor transformations, recurrent processing is often expressed in primary cortices in a late phase of the cortical response to sensory stimuli. This late phase is engaged by attention and stimulus complexity, and also encodes sensory-independent factors, including movement and report-related variables. However, despite its pervasiveness, the nature and function of late activity in perceptual decision-making remain unclear. We tested whether the function of late activity depends on the complexity of a sensory change-detection task. Complexity was based on increasing processing requirements for the same sensory stimuli. We found that the temporal window in which V1 is necessary for perceptual decision-making was extended when we increased task complexity, independently of the presented visual stimulus. This window overlapped with the emergence of report-related activity and decreased noise correlations in V1. The onset of these co-occurring activity patterns was time-locked to and preceded reaction time, and predicted the reduction in behavioral performance obtained by optogenetically silencing late V1 activity (>200 ms after stimulus onset), a result confirmed by a second multisensory task with different requirements. Thus, although early visual response components encode all sensory information necessary to solve the task, V1 is not simply relaying information to higher-order areas transforming it into behavioral responses. Rather, task complexity determines the temporal extension of a loop of recurrent activity, which overlaps with report-related activity and determines how perceptual decisions are built.


2021 ◽  
pp. 1-10
Author(s):  
Shou-Han Zhou ◽  
Gerard Loughnane ◽  
Redmond O'Connell ◽  
Mark A. Bellgrove ◽  
Trevor T.-J. Chong

Abstract Current models of perceptual decision-making assume that choices are made after evidence in favor of an alternative accumulates to a given threshold. This process has recently been revealed in human electrophysiological (EEG) recordings, but an unresolved issue is how these neural mechanisms are modulated by competing, yet task-irrelevant, stimuli. In this study, we tested 20 healthy participants on a motion direction discrimination task. Participants monitored two patches of random dot motion simultaneously presented on either side of fixation for periodic changes in an upward or downward motion, which could occur equiprobably in either patch. On a random 50% of trials, these periods of coherent vertical motion were accompanied by simultaneous task-irrelevant, horizontal motion in the contralateral patch. Our data showed that these distractors selectively increased the amplitude of early target selection responses over scalp sites contralateral to the distractor stimulus, without impacting on responses ipsilateral to the distractor. Importantly, this modulation mediated a decrement in the subsequent buildup rate of a neural signature of evidence accumulation and accounted for a slowing of RTs. These data offer new insights into the functional interactions between target selection and evidence accumulation signals, and their susceptibility to task-irrelevant distractors. More broadly, these data neurally inform future models of perceptual decision-making by highlighting the influence of early processing of competing stimuli on the accumulation of perceptual evidence.


2021 ◽  
Author(s):  
Catherine Manning ◽  
Cameron Dale Hassall ◽  
Laurence Hunt ◽  
Anthony Norcia ◽  
Eric-Jan Wagenmakers ◽  
...  

Many studies report atypical responses to sensory information in autistic individuals, yet it is not clear which stages of processing are affected, with little consideration given to decision-making processes. We combined diffusion modelling with high-density EEG to identify which processing stages differ between 50 autistic and 50 typically developing children aged 6-14 years during two visual motion tasks. Our pre-registered hypotheses were that autistic children would show task-dependent differences in sensory evidence accumulation, alongside a more cautious decision-making style and longer non-decision time across tasks. We tested these hypotheses using hierarchical Bayesian diffusion models with a rigorous blind modelling approach, finding no conclusive evidence for our hypotheses. Using a data-driven method, we identified a response-locked centro-parietal component previously linked to the decision-making process. The build-up in this component did not consistently relate to evidence accumulation in autistic children. This suggests that the relationship between the EEG measure and diffusion-modelling is not straightforward in autistic children. Compared to a related study of children with dyslexia, motion processing differences appear less pronounced in autistic children. Our results also provide weak evidence that ADHD symptoms moderate perceptual decision-making in autistic children.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


Cortex ◽  
2021 ◽  
Author(s):  
Nicole R. Stefanac ◽  
Shou-Han Zhou ◽  
Megan M. Spencer-Smith ◽  
Redmond O’Connell ◽  
Mark A. Bellgrove

2021 ◽  
Vol 32 (9) ◽  
pp. 1494-1509
Author(s):  
Yuan Chang Leong ◽  
Roma Dziembaj ◽  
Mark D’Esposito

People’s perceptual reports are biased toward percepts they are motivated to see. The arousal system coordinates the body’s response to motivationally significant events and is well positioned to regulate motivational effects on perceptual judgments. However, it remains unclear whether arousal would enhance or reduce motivational biases. Here, we measured pupil dilation as a measure of arousal while participants ( N = 38) performed a visual categorization task. We used monetary bonuses to motivate participants to perceive one category over another. Even though the reward-maximizing strategy was to perform the task accurately, participants were more likely to report seeing the desirable category. Furthermore, higher arousal levels were associated with making motivationally biased responses. Analyses using computational models suggested that arousal enhanced motivational effects by biasing evidence accumulation in favor of desirable percepts. These results suggest that heightened arousal biases people toward what they want to see and away from an objective representation of the environment.


2019 ◽  
Vol 31 (7) ◽  
pp. 1044-1053 ◽  
Author(s):  
Gerard M. Loughnane ◽  
Méadhbh B. Brosnan ◽  
Jessica J. M. Barnes ◽  
Angela Dean ◽  
Sanjay L. Nandam ◽  
...  

Recent behavioral modeling and pupillometry studies suggest that neuromodulatory arousal systems play a role in regulating decision formation but neurophysiological support for these observations is lacking. We employed a randomized, double-blinded, placebo-controlled, crossover design to probe the impact of pharmacological enhancement of catecholamine levels on perceptual decision-making. Catecholamine levels were manipulated using the clinically relevant drugs methylphenidate and atomoxetine, and their effects were compared with those of citalopram and placebo. Participants performed a classic EEG oddball paradigm that elicits the P3b, a centro-parietal potential that has been shown to trace evidence accumulation, under each of the four drug conditions. We found that methylphenidate and atomoxetine administration shortened RTs to the oddball targets. The neural basis of this behavioral effect was an earlier P3b peak latency, driven specifically by an increase in its buildup rate without any change in its time of onset or peak amplitude. This study provides neurophysiological evidence for the catecholaminergic enhancement of a discrete aspect of human decision-making, that is, evidence accumulation. Our results also support theoretical accounts suggesting that catecholamines may enhance cognition via increases in neural gain.


2017 ◽  
Author(s):  
Onno van der Groen ◽  
Matthew F. Tang ◽  
Nicole Wenderoth ◽  
Jason B. Mattingley

Summary:Perceptual decision-making relies on the gradual accumulation of noisy sensory evidence until a specified boundary is reached and an appropriate response is made. It might be assumed that adding noise to a stimulus, or to the neural systems involved in its processing, would interfere with the decision process. But it has been suggested that adding an optimal amount of noise can, under appropriate conditions, enhance the quality of subthreshold signals in nonlinear systems, a phenomenon known as stochastic resonance. Here we asked whether perceptual decisions obey these stochastic resonance principles by adding noise directly to the visual cortex using transcranial random noise stimulation (tRNS) while participants judged the direction of motion in foveally presented random-dot motion arrays. Consistent with the stochastic resonance account, we found that adding tRNS bilaterally to visual cortex enhanced decision-making when stimuli were just below, but not well below or above, perceptual threshold. We modelled the data under a drift diffusion framework to isolate the specific components of the multi-stage decision process that were influenced by the addition of neural noise. This modelling showed that tRNS increased drift rate, which indexes the rate of evidence accumulation, but had no effect on bound separation or non-decision time. These results were specific to bilateral stimulation of visual cortex; control experiments involving unilateral stimulation of left and right visual areas showed no influence of random noise stimulation. Our study is the first to provide causal evidence that perceptual decision-making is susceptible to a stochastic resonance effect induced by tRNS, and that this effect arises from selective enhancement of the rate of evidence accumulation for sub-threshold sensory events.


Author(s):  
Loughnane Gerard ◽  
Newman Daniel ◽  
Bellgrove Mark ◽  
Lalor Edmund ◽  
Kelly Simon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document