scholarly journals Single-molecule force spectroscopy of protein-membrane interactions

2017 ◽  
Author(s):  
Lu Ma ◽  
Yiying Cai ◽  
Yanghui Li ◽  
Junyi Jiao ◽  
Zhenyong Wu ◽  
...  

AbstractMany biological processes rely on protein-membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2-7 pN and had binding energies of 4-14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein-membrane interactions.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lu Ma ◽  
Yiying Cai ◽  
Yanghui Li ◽  
Junyi Jiao ◽  
Zhenyong Wu ◽  
...  

Many biological processes rely on protein–membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach, single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2–7 pN and had binding energies of 4–14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein–membrane interactions.



2017 ◽  
Author(s):  
Lu Ma ◽  
Yiying Cai ◽  
Yanghui Li ◽  
Junyi Jiao ◽  
Zhenyong Wu ◽  
...  


2021 ◽  
Vol 714 (3) ◽  
pp. 032023
Author(s):  
Ling Chen ◽  
Liya Yang ◽  
Chunxia Wang ◽  
Ting Zhu


Author(s):  
Jyoti Yadav ◽  
Yashwant Kumar ◽  
Gayathri S. Singaraju ◽  
Shivprasad Patil


2010 ◽  
Vol 132 (32) ◽  
pp. 11036-11038 ◽  
Author(s):  
Ningning Liu ◽  
Bo Peng ◽  
Yuan Lin ◽  
Zhaohui Su ◽  
Zhongwei Niu ◽  
...  


Langmuir ◽  
2010 ◽  
Vol 26 (12) ◽  
pp. 9491-9496 ◽  
Author(s):  
Ningning Liu ◽  
Tianjia Bu ◽  
Yu Song ◽  
Wei Zhang ◽  
Jinjing Li ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document