folding kinetics
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 35)

H-INDEX

61
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Golam Mustafa ◽  
Prabesh Gyawali ◽  
Jacob A. Taylor ◽  
Parastoo Maleki ◽  
Marlon V. Nunez ◽  
...  

We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for physiologically low pH levels (pH<6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor. In this manuscript, we establish single molecule F&oumlrster resonance energy transfer (smFRET) as a tool to study the i-motif over a broad pH and ionic conditions. We demonstrate pH and salt dependence of i-motif formation under steady state conditions and illustrate the kinetics of i-motif folding in real time at the single molecule level. We also show the prominence of intermediate folding states and reversible folding/unfolding transitions. We present an example of using the i-motif as an in-situ pH sensor and use this sensor establish the time scale for the pH drop in a commonly used oxygen scavenging system.


2021 ◽  
Vol 118 (46) ◽  
pp. e2115113118
Author(s):  
Ved P. Tiwari ◽  
Yuki Toyama ◽  
Debajyoti De ◽  
Lewis E. Kay ◽  
Pramodh Vallurupalli

Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect “invisible” minor states on the energy landscape of the A39G mutant FF domain that exhibited “two-state” folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s−1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.


2021 ◽  
Author(s):  
Guglielmo Vesco ◽  
Marco Lamperti ◽  
Domenico Salerno ◽  
Claudia Adriana Marrano ◽  
Valeria Cassina ◽  
...  

Abstract G-quadruplexes embedded within promoters play a crucial role in regulating the gene expression. KIT is a widely studied oncogene, whose promoter contains three G-quadruplex forming sequences, c-kit1, c-kit2 and c-kit*. For these sequences available studies cover ensemble and single-molecule analyses, although for kit* the latter were limited to a study on a promoter domain comprising all of them. Recently, c-kit2 has been reported to fold according to a multi-step process involving folding intermediates. Here, by exploiting fluorescence resonance energy transfer, both in ensemble and at the single molecule level, we investigated the folding of expressly designed constructs in which, alike in the physiological context, either c-kit2 or c-kit* are flanked by double stranded DNA segments. To assess whether the presence of flanking ends at the borders of the G-quadruplex affects the folding, we studied under the same protocols oligonucleotides corresponding to the minimal G-quadruplex forming sequences. Data suggest that addition of flanking ends results in biasing both the final equilibrium state and the folding kinetics. A previously unconsidered aspect is thereby unravelled, which ought to be taken into account to achieve a deeper insight of the complex relationships underlying the fine tuning of the gene-regulatory properties of these fascinating DNA structures.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 385
Author(s):  
Krzysztof Kuczera ◽  
Robert Szoszkiewicz ◽  
Jinyan He ◽  
Gouri S. Jas

We present a computer simulation study of helix folding in alanine homopeptides (ALA)n of length n = 5, 8, 15, and 21 residues. Based on multi-microsecond molecular dynamics simulations at room temperature, we found helix populations and relaxation times increasing from about 6% and ~2 ns for ALA5 to about 60% and ~500 ns for ALA21, and folding free energies decreasing linearly with the increasing number of residues. The helix folding was analyzed with the Optimal Dimensionality Reduction method, yielding coarse-grained kinetic models that provided a detailed representation of the folding process. The shorter peptides, ALA5 and ALA8, tended to convert directly from coil to helix, while ALA15 and ALA21 traveled through several intermediates. Coarse-grained aggregate states representing the helix, coil, and intermediates were heterogeneous, encompassing multiple peptide conformations. The folding involved multiple pathways and interesting intermediate states were present on the folding paths, with partially formed helices, turns, and compact coils. Statistically, helix initiation was favored at both termini, and the helix was most stable in the central region. Importantly, we found the presence of underlying universal local dynamics in helical peptides with correlated transitions for neighboring hydrogen bonds. Overall, the structural and dynamical parameters extracted from the trajectories are in good agreement with experimental observables, providing microscopic insights into the complex helix folding kinetics.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 347
Author(s):  
Jiabin Huang ◽  
Björn Voß

Studying the folding kinetics of an RNA can provide insight into its function and is thus a valuable method for RNA analyses. Computational approaches to the simulation of folding kinetics suffer from the exponentially large folding space that needs to be evaluated. Here, we present a new approach that combines structure abstraction with evolutionary conservation to restrict the analysis to common parts of folding spaces of related RNAs. The resulting algorithm can recapitulate the folding kinetics known for single RNAs and is able to analyse even long RNAs in reasonable time. Our program RNAliHiKinetics is the first algorithm for the simulation of consensus folding kinetics and addresses a long-standing problem in a new and unique way.


2021 ◽  
Author(s):  
Rafael Tapia-Rojo ◽  
Alvaro Alonso-Caballero ◽  
Carmen L. Badilla ◽  
Julio M. Fernandez

AbstractThe classical “one sequence, one structure, one function” paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements to a few minutes, which prevents to completely characterize a protein individual and, hence, to capture the heterogeneity among molecular populations. Here, we introduce a magnetic tweezers design, which showcases enhanced stability and resolution that allows us to measure the folding dynamics of a single protein during several uninterrupted days with a high temporal and spatial resolution. Thanks to this instrumental development, we do a complete characterization of two proteins with a very different force-response: the talin R3IVVI domain and protein L. Days-long recordings on the same single molecule accumulate several thousands of folding transitions sampled with sub-ms resolution, which allows us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. Our instrumental development offers a new tool for profiling individual molecules, opening the gates to the characterization of biomolecular heterogeneity.


Author(s):  
Barbara Scalvini ◽  
Vahid Sheikhhassani ◽  
Alireza Mashaghi

Native topology correlates with folding rate: entangled topological relationships between protein loops facilitate folding. High numbers of topologically independent units (circuits) – normalized by size – are associated with fast folding kinetics.


2020 ◽  
Vol 1 (3) ◽  
pp. 01-02
Author(s):  
Kuo-Chen Chou

About 30 years ago a very important paper on “Applications of graph theory to enzyme kinetics and protein folding kinetics: steady and non-steady state systems”


Sign in / Sign up

Export Citation Format

Share Document