scholarly journals Deubiquitylation and stabilization of p21 by USP11 is critical for cell cycle progression and DNA damage responses

2017 ◽  
Author(s):  
Tanggang Deng ◽  
Guobei Yan ◽  
Yu Zhou ◽  
Xiaoxiao Hu ◽  
Jianglin Li ◽  
...  

Abstractp21WAF1/CIP1is a broad-acting cyclin-dependent kinase inhibitor. Its stability is essential for proper cell cycle progression and cell fate decision. Ubiquitylation by the multiple E3 ubiquitin ligases complex is the major regulatory mechanism of p21, which induces p21 degradation. However, it is unclear whether ubiquitylated p21 can be recycled. In this study, we report USP11 as a deubiquitylase of p21. In the nucleus, USP11 binds to p21, catalyzes the removal of polyubiquitin chains conjugated onto p21 and stabilizes p21 protein. As a result, USP11 reverses p21 polyubiquitylation and degradation mediated by SCFSKP2, CRL4CDT2and APC/CCDT20in a cell cycle-independent manner. Loss of USP11 causes the destabilization of p21 and induces the G1/S transition in unperturbed cells. Furthermore, p21 accumulation mediated by DNA damage is completely abolished in cells depleted of USP11, which results in abrogation of the G2 checkpoint and induction of apoptosis. Functionally, USP11-mediated stabilization of p21 inhibits cell proliferation and tumorigenesis in vivo. These findings reveal an important mechanism by which p21 can be stabilized by direct deubiquitylation and pinpoint a crucial role of the USP11-p21 axis in regulating cell cycle progression and DNA damage responses.

2018 ◽  
Vol 115 (18) ◽  
pp. 4678-4683 ◽  
Author(s):  
Tanggang Deng ◽  
Guobei Yan ◽  
Xin Song ◽  
Lin Xie ◽  
Yu Zhou ◽  
...  

p21WAF1/CIP1 is a broad-acting cyclin-dependent kinase inhibitor. Its stability is essential for proper cell-cycle progression and cell fate decision. Ubiquitylation by the multiple E3 ubiquitin ligase complexes is the major regulatory mechanism of p21, which induces p21 degradation. However, it is unclear whether ubiquitylated p21 can be recycled. In this study, we report USP11 as a deubiquitylase of p21. In the nucleus, USP11 binds to p21, catalyzes the removal of polyubiquitin chains conjugated onto p21, and stabilizes p21 protein. As a result, USP11 reverses p21 polyubiquitylation and degradation mediated by SCFSKP2, CRL4CDT2, and APC/CCDC20 in a cell-cycle–independent manner. Loss of USP11 causes the destabilization of p21 and induces the G1/S transition in unperturbed cells. Furthermore, p21 accumulation mediated by DNA damage is completely abolished in cells depleted of USP11, which results in abrogation of the G2 checkpoint and induction of apoptosis. Functionally, USP11-mediated stabilization of p21 inhibits cell proliferation and tumorigenesis in vivo. These findings reveal an important mechanism by which p21 can be stabilized by direct deubiquitylation, and they pinpoint a crucial role of the USP11-p21 axis in regulating cell-cycle progression and DNA damage responses.


2010 ◽  
Vol 29 (18) ◽  
pp. 3130-3139 ◽  
Author(s):  
Sophie E Polo ◽  
Abderrahmane Kaidi ◽  
Linda Baskcomb ◽  
Yaron Galanty ◽  
Stephen P Jackson

Open Biology ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 140156 ◽  
Author(s):  
Didier J. Colin ◽  
Karolina O. Hain ◽  
Lindsey A. Allan ◽  
Paul R. Clarke

Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-x L by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.


2020 ◽  
Author(s):  
Yuki Shindo ◽  
Amanda A. Amodeo

AbstractThe early embryos of many species undergo a switch from rapid, reductive cleavage divisions to slower, cell fate-specific division patterns at the Mid-Blastula Transition (MBT). The maternally loaded histone pool is used to measure the increasing ratio of nuclei to cytoplasm (N/C ratio) to control MBT onset, but the molecular mechanism of how histones regulate the cell cycle has remained elusive. Here, we show that excess histone H3 inhibits the DNA damage checkpoint kinase Chk1 to promote cell cycle progression in the Drosophila embryo. We find that excess H3-tail that cannot be incorporated into chromatin is sufficient to shorten the embryonic cell cycle and reduce the activity of Chk1 in vitro and in vivo. Removal of the Chk1 phosphosite in H3 abolishes its ability to regulate the cell cycle. Mathematical modeling quantitatively supports a mechanism where changes in H3 nuclear concentrations over the final cell cycles leading up to the MBT regulate Chk1-dependent cell cycle slowing. We provide a novel mechanism for Chk1 regulation by H3, which is crucial for proper cell cycle remodeling during early embryogenesis.


2015 ◽  
Vol 27 (2) ◽  
pp. 326-339 ◽  
Author(s):  
Valenti Gomez ◽  
Ramazan Gundogdu ◽  
Marta Gomez ◽  
Lily Hoa ◽  
Neelam Panchal ◽  
...  

2012 ◽  
Vol 109 (51) ◽  
pp. 20937-20942 ◽  
Author(s):  
L. Zhang ◽  
Y. Mei ◽  
N.-y. Fu ◽  
L. Guan ◽  
W. Xie ◽  
...  

2008 ◽  
Vol 28 (24) ◽  
pp. 7442-7450 ◽  
Author(s):  
Sathyavageeswaran Shreeram ◽  
Weng Kee Hee ◽  
Dmitry V. Bulavin

ABSTRACT The cell division cycle 25A (Cdc25A) phosphatase is a critical regulator of cell cycle progression under normal conditions and after stress. Stress-induced degradation of Cdc25A has been proposed as a major way of delaying cell cycle progression. In vitro studies pointed toward serine 123 as a key site in regulation of Cdc25A stability after exposure to ionizing radiation (IR). To address the role of this phosphorylation site in vivo, we generated a knock-in mouse in which alanine was substituted for serine 123. The Cdc25 S123A knock-in mice appeared normal, and, unexpectedly, cells derived from them exhibited unperturbed cell cycle and DNA damage responses. In turn, we found that Cdc25A was present in centrosomes and that Cdc25A levels were not reduced after IR in knock-in cells. This resulted in centrosome amplification due to lack of induction of Cdk2 inhibitory phosphorylation after IR specifically in centrosomes. Further, Cdc25A knock-in animals appeared sensitive to IR-induced carcinogenesis. Our findings indicate that Cdc25A S123 phosphorylation is crucial for coupling centrosome duplication to DNA replication cycles after DNA damage and therefore is likely to play a role in the regulation of tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document