scholarly journals Structural-Kinetic-Thermodynamic Relationships Identified from Physics-based Molecular Simulation Models

2017 ◽  
Author(s):  
Joseph F. Rudzinski ◽  
Tristan Bereau

Coarse-grained molecular simulation models have provided immense, often general, insight into the complex behavior of condensed-phase systems, but suffer from a lost connection to the true dynamical properties of the underlying system. In general, the physics that is built into a model shapes the free-energy landscape, restricting the attainable static and kinetic properties. In this work, we perform a detailed investigation into the property interrelationships resulting from these restrictions, for a representative system of the helix-coil transition. Inspired by high-throughput studies, we systematically vary force-field parameters and monitor their structural, kinetic, and thermodynamic properties. The focus of our investigation is a simple coarse-grained model, which accurately represents the underlying structural ensemble, i.e., effectively avoids sterically-forbidden configurations. As a result of this built-in physics, we observe a rather large restriction in the topology of the networks characterizing the simulation kinetics. When screening across force-field parameters, we find that structurally-accurate models also best reproduce the kinetics, suggesting structural-kinetic relationships for these models. Additionally, an investigation into thermodynamic properties reveals a link between the cooperativity of the transition and the network topology at a single reference temperature.

2019 ◽  
Author(s):  
Michael Servis ◽  
Alex McCue ◽  
Amanda Casella ◽  
Aurora Clark

Surfactant-laden liquid/liquid interfaces mediate numerous chemical processes, from commercial applications of microemulsions to chemical separations. Classical molecular dynamics simulation is a prevalent method for studying microscopic and thermodynamic properties of such interfaces. However, the extent to which these features can be reliably predicted, and the variations in predicted behavior, depend upon the force field parameters employed. At present, the impact of force fields upon simulated properties is relatively understudied. Yet recent advances to sampling and analysis algorithms are increasing the interpretation of simulation data and therefore understanding force field dependence is increasingly relevant. In this study, the impact of the force field of the surfactant tri-n-butyl phosphate (TBP), as well as that of water, is investigated at a water/(n-hexane + surfactant) interface. Empirical charge scaling was employed to modulate the hydrophilicity of the surfactant. As anticipated, the relative hydrophilicity of TBP influences a number of properties, including the adsorbed concentrations of TBP at the interface, and macroscopic properties that result from hydrogen bonding interactions, such as interfacial tension and width. The dynamic properties of solvents at the interface are strongly modulated by the variation in hydrogen bond strength caused by different charge scaling of the TBP model. This includes the residence times of water at the interface, where stronger water-TBP hydrogen bonding causes long-lived residences. Interestingly, there are a number of features that are relatively insensitive to the TBP hydrophilicity. In one important case, the concentration of water-bridged TBP dimers was only impacted for the least hydrophilic model. As these dimeric species are the building block of surface protrusions that lead to water transport across the interface, this implies that collective organizational patterns and surface structures that derive from multiple driving forces (e.g. TBP hydrophilicity and organic solvent free energies of solvation) are less sensitive to individual force field parameters. Further, we note that competitive interactions can "cancel" the effects of changing TBP charge on interfacial properties. One example is the orientation and hydrogen bonding structure of interfacial water, where the direct TBP-water hydrogen bonding competes against the indirect TBP-induced interfacial roughness. In combination, these observations may assist future simulation studies in calibrating surfactant models to, or interpreting results of, a broad range of dynamic, structural and thermodynamic properties.


2021 ◽  
Author(s):  
Xiang-feng Jia ◽  
Jing-fei Chen ◽  
Hui-xue Ren ◽  
Qi Wang ◽  
Wen Xu ◽  
...  

Abstract Through analyzing the deficiency of the current coarse-grained (CG) model, a new CG model for the ionic surfactant was proposed based on the Martini force field and iterative Boltzmann inversion method. In this model, the electrostatic interaction can be tackled by using a self-defined piecewise function to avoid the disadvantage of using coarse-grained solvents, and the VDW interaction parameters were derived by iterative methods. Using the improved model, the radial distribution function of NaCl and SDS solution in all-atom OPLS can be completely reproduced. The successful setup of the new coarse-grained model provides a good example of the construction of a high-precision coarse-grained force field.


2017 ◽  
Author(s):  
Joseph F. Rudzinski ◽  
Tristan Bereau

Coarse-grained molecular simulation models can provide significant insight into the complex behavior of protein systems, but suffer from an inherently distorted description of dynamical properties. We recently demonstrated that, for a heptapeptide of alanine residues, the structural and kinetic properties of a simulation model are linked in a rather simple way, given a certain level of physics present in the model. In this work, we extend these findings to a longer peptide, for which the representation of configuration space in terms of a full enumeration of sequences of helical/coil states along the peptide backbone is impractical. We verify the structural-kinetic relationships by scanning the parameter space of a simple native-biased model and then employ a distinct transferable model to validate and generalize the conclusions. Our results further demonstrate the validity of the previous findings, while clarifying the role of conformational entropy in the determination of the structural-kinetic relationships. More specifically, while the global, long timescale kinetic properties of a particular class of models with varying energetic parameters but approximately fixed conformational entropy are determined by the overarching structural features of the ensemble, a shift in these kinetic observables occurs for models with a distinct representation of steric interactions. At the same time, the relationship between structure and more local, faster kinetic properties is not affected by varying the conformational entropy of the model.


2011 ◽  
Vol 115 (38) ◽  
pp. 11154-11169 ◽  
Author(s):  
Carlos Avendaño ◽  
Thomas Lafitte ◽  
Amparo Galindo ◽  
Claire S. Adjiman ◽  
George Jackson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document