scholarly journals A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

2017 ◽  
Author(s):  
Sean D. Schoville ◽  
Yolanda H. Chen ◽  
Martin N. Andersson ◽  
Joshua B. Benoit ◽  
Anita Bhandari ◽  
...  

AbstractThe Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.

1997 ◽  
Vol 129 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Jeff G. Stewart ◽  
George G. Kennedy ◽  
Antony V. Sturz

AbstractA survey of 65 populations of Colorado potato beetle, Leptinotarsa decemlineata (Say), from locations across Prince Edward Island in 1993 indicated that insecticide resistance was widespread, but was most prevalent in the western and central potato-producing areas. Of the populations surveyed, 31, 26, 19, and 4% were classified as resistant to permethrin, carbofuran, azinphos-methyl, and endosulfan, respectively. Of 53 populations surveyed for resistance to these four insecticides, 13, six, four, and one of the populations were classified as resistant to one, two, three, and four insecticides, respectively.


1987 ◽  
Vol 119 (5) ◽  
pp. 459-463 ◽  
Author(s):  
Gilles Boiteau ◽  
R.H. Parry ◽  
C.R. Harris

AbstractA study conducted between 1982 and 1985 established the presence of a limited number of populations of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), resistant to carbofuran in New Brunswick. Additional laboratory tests with two field-collected strains indicated that both were resistant to endosulfan; one strain also showed 43- and 37-fold levels of resistance to carbofuran and phosmet, respectively, and low-level (< 10-fold) resistance to permethrin, fenvalerate, disulfoton, and aldicarb. There has been no measurable spread of resistance.


Author(s):  
Benjamin Pélissié ◽  
Yolanda H. Chen ◽  
Zachary P. Cohen ◽  
Michael S. Crossley ◽  
David J. Hawthorne ◽  
...  

AbstractBackgroundInsecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices. An improved understanding of the evolutionary mechanisms that allow pests to rapidly adapt to novel control tactics will help prevent economically damaging outbreaks. The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a global super-pest that rapidly evolves resistance to insecticides. Using whole genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, non-mutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation.ResultsPopulation genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit only modest reductions in nucleotide diversity, relative to non-pest ancestral populations, and show evidence of recent demographic expansion. Genome scans of selection provide clear signatures of repeated adaptation across different CPB populations, with especially strong evidence that insecticide resistance involves selection of different genes in different populations. Similarly, analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns.ConclusionCPB evolves insecticide resistance repeatedly across agricultural regions, and oftentimes at the same loci, supporting a prominent role of polygenic evolution from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. An important future goal will be to understand how polygenic resistance phenotypes spread among local pest populations, in order to refine integrated pest management practices to maintain the efficacy and sustainability of novel control techniques.


Author(s):  
Zachary Cohen ◽  
D J Hawthorne ◽  
Sean Schoville

Structural variations (SVs) have been associated with genetic diversity and adaptation in diverse taxa. Despite these observations, it is not yet clear what their relative importance is for microevolution, especially with respect to known drivers of diversity, e.g., nucleotide substitutions, in rapidly adapting species. Here we examine the significance of SVs in pesticide resistance evolution of the agricultural super-pest, the Colorado potato beetle, Leptinotarsa decemlineata. By employing a trio-binning procedure, we develop near chromosomal reference genomes to characterize structural variation within this species. These updated assemblies represent >100-fold improvement of contiguity and include derived pest and ancestral non-pest individuals. We identify >200,000 SVs, which appear to be non-randomly distributed across the genome as they co-occur with transposable elements. SVs intersect exons for genes associated with insecticide resistance, development, and transcription, most notably cytochrome P450 (CYP) genes. To understand the role that SVs might play in adaptation, we incorporate an additional 66 genomes among pest and non-pest populations of North America into the SV graph. Single nucleotide polymorphisms (SNPs) and SVs have a similar proportion in coding and non-coding regions of the genome, but there is a deficit of SNPs in SVs, suggesting SVs may be under selection. Using multiple lines of evidence, we identify 28 positively selected genes that include 337 SVs and 442 outlier SNPs. Among these, there are four associated with insecticide resistance. Two of these genes (CYP4g15 and glycosyltransferase-13) are physically linked by a structural variant and have previously been shown to be co-induced during insecticide exposure.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 695-700 ◽  
Author(s):  
David J Hawthorne

Abstract A genetic linkage map was constructed from an intraspecific cross of the Colorado potato beetle, Leptinotarsa decemlineata. This is an initial step toward mapping the loci that underlie important phenotypes associated with insect adaptation to an agroecosystem. The map was made with 172 AFLP and 10 anonymous codominant markers segregating among 74 backcross (BC1) individuals. Markers were mapped to 18 linkage groups and a subset of the markers with a mean intermarker distance of 11.1 cM is presented. A pyrethroid-resistance candidate gene, LdVssc1, was placed onto the map as well. The sex chromosome was identified by exploiting the XO nature of sex determination in this species using patterns of variation at LdVssc1 and the codominant markers.


Sign in / Sign up

Export Citation Format

Share Document