scholarly journals Chromosome-scale genome assembly provides insights into rye biology, evolution, and agronomic potential

Author(s):  
M. Timothy Rabanus-Wallace ◽  
Bernd Hackauf ◽  
Martin Mascher ◽  
Thomas Lux ◽  
Thomas Wicker ◽  
...  

AbstractWe present a chromosome-scale annotated assembly of the rye (Secale cereale L. inbred line ‘Lo7’) genome, which we use to explore Triticeae genomic evolution, and rye’s superior disease and stress tolerance. The rye genome shares chromosome-level organization with other Triticeae cereals, but exhibits unique retrotransposon dynamics and structural features. Crop improvement in rye, as well as in wheat and triticale, will profit from investigations of rye gene families implicated in pathogen resistance, low temperature tolerance, and fertility control systems for hybrid breeding. We show that rye introgressions in wheat breeding panels can be characterised in high-throughput to predict the yield effects and trade-offs of rye chromatin.

2021 ◽  
Author(s):  
M. Timothy Rabanus-Wallace ◽  
Bernd Hackauf ◽  
Martin Mascher ◽  
Thomas Lux ◽  
Thomas Wicker ◽  
...  

AbstractRye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye’s incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye–wheat introgressions.


2020 ◽  
Vol 47 (8) ◽  
pp. 675 ◽  
Author(s):  
Caterina Selva ◽  
Matteo Riboni ◽  
Ute Baumann ◽  
Tobias Würschum ◽  
Ryan Whitford ◽  
...  

Hybrid breeding in wheat (Triticum aestivum L.) has the potential to deliver major yield increases. This is a requisite to guarantee food security for increasing population demands and to counterbalance the effects of extreme environmental conditions. Successful hybrid breeding in wheat relies on forced outcrossing while preventing self-pollination. To achieve this, research has been directed towards identifying and improving fertility control systems. To maximise cross-pollination and seed set, however, fertility control systems need to be complemented by breeding phenotypically distinct male and female lines. This review summarises existing and novel male sterility systems for wheat hybridisation. We also consider the genetic resources that can be used to alter wheat’s floral development and spike morphology, with a focus on the genetic variation already available. Exploiting these resources can lead to enhanced outcrossing, a key requirement in the progress towards hybrid wheat breeding.


Author(s):  
Dan Wu ◽  
Chuying Yu ◽  
Wenbin Zhong

Natural nacre built up with brick-and-mortar architecture, exhibiting extraordinary strength and toughness, provides an inspiration to construct high-performance multifunctional film for flexible energy storage and portable electrical devices. In the...


2006 ◽  
pp. 124-129 ◽  
Author(s):  
Boon Chin Heng ◽  
Kumar Jayaseelan Vinoth ◽  
Hua Liu ◽  
Manoor Prakash Hande ◽  
Tong Cao

Sign in / Sign up

Export Citation Format

Share Document