scholarly journals Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms

Author(s):  
Scott H. Saunders ◽  
Edmund C.M. Tse ◽  
Matthew D. Yates ◽  
Fernanda Jiménez Otero ◽  
Scott A. Trammell ◽  
...  

SUMMARYExtracellular electron transfer (EET), the process whereby cells access electron acceptors or donors that reside many cell lengths away, enables metabolic activity by microorganisms, particularly under oxidant-limited conditions that occur in multicellular bacterial biofilms. Although different mechanisms underpin this process in select organisms, a widespread strategy involves extracellular electron shuttles, redox-active metabolites that are secreted and recycled by diverse bacteria. How these shuttles catalyze electron transfer within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazine electron shuttles mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms, which are important in nature and disease. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by binding to eDNA. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and phenazines can participate directly in redox reactions through DNA; the biofilm eDNA can also support rapid electron transfer between redox active intercalators. Electrochemical measurements of biofilms indicate that retained PYO supports an efficient redox cycle with rapid EET and slow loss from the biofilm. Together, these results establish that eDNA facilitates phenazine metabolic processes in P. aeruginosa biofilms, suggesting a model for how extracellular electron shuttles achieve retention and efficient EET in biofilms.

Cell ◽  
2020 ◽  
Vol 182 (4) ◽  
pp. 919-932.e19 ◽  
Author(s):  
Scott H. Saunders ◽  
Edmund C.M. Tse ◽  
Matthew D. Yates ◽  
Fernanda Jiménez Otero ◽  
Scott A. Trammell ◽  
...  

2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


2009 ◽  
Vol 192 (1) ◽  
pp. 365-369 ◽  
Author(s):  
Yun Wang ◽  
Suzanne E. Kern ◽  
Dianne K. Newman

ABSTRACT Antibiotics are increasingly recognized as having other, important physiological functions for the cells that produce them. An example of this is the effect that phenazines have on signaling and community development for Pseudomonas aeruginosa (L. E. Dietrich, T. K. Teal, A. Price-Whelan, and D. K. Newman, Science 321:1203-1206, 2008). Here we show that phenazine-facilitated electron transfer to poised-potential electrodes promotes anaerobic survival but not growth of Pseudomonas aeruginosa PA14 under conditions of oxidant limitation. Other electron shuttles that are reduced but not made by PA14 do not facilitate survival, suggesting that the survival effect is specific to endogenous phenazines.


Geoderma ◽  
2022 ◽  
Vol 408 ◽  
pp. 115580
Author(s):  
Duyen Minh Pham ◽  
Hiroshi Oji ◽  
Shinya Yagi ◽  
Satoshi Ogawa ◽  
Arata Katayama

2017 ◽  
Vol 114 ◽  
pp. 8-12 ◽  
Author(s):  
Masahiro Kaneko ◽  
Masahito Ishikawa ◽  
Kazuhito Hashimoto ◽  
Shuji Nakanishi

Sign in / Sign up

Export Citation Format

Share Document