scholarly journals Accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis

2019 ◽  
Author(s):  
Guy Karlebach ◽  
Peter Hansen ◽  
Diogo F.T. Veiga ◽  
Robin Steinhaus ◽  
Daniel Danis ◽  
...  

AbstractThe regulation of mRNA controls both overall gene expression as well as the distribution of mRNA isoforms encoded by the gene. Current algorithmic approaches focus on characterization of significant differential expression or alternative splicing events or isoform distribution without integrating both events. Here, we present Hierarchical Bayesian Analysis of Differential Expression and ALternative SPlicing (HBA-DEALS), which simultaneously characterizes differential expression and splicing in cohorts. HBA-DEALS attains state of the art or better performance for both expression and splicing, and allows genes to be characterized as having differential gene expression (DGE), differential alternative splicing (DAST), both, or neither. Based on an analysis of Genotype-Tissue Expression (GTEx) data we demonstrate the existence of sets of genes that show predominant DGE or DAST across a comparison of 20 tissue types, and show that these sets have pervasive differences with respect to gene structure, function, membership in protein complexes, and promoter architecture.

2017 ◽  
Vol 117 (04) ◽  
pp. 758-768 ◽  
Author(s):  
Sebastian Armasu ◽  
Bryan McCauley ◽  
Iftikhar Kullo ◽  
Hugues Sicotte ◽  
Jyotishman Pathak ◽  
...  

SummaryTo identify novel single nucleotide polymorphisms (SNPs) associated with venous thromboembolism (VTE) in African-Americans (AAs), we performed a genome-wide association study (GWAS) of VTE in AAs using the Electronic Medical Records and Genomics (eMERGE) Network, comprised of seven sites each with DNA biobanks (total ~39,200 unique DNA samples) with genome-wide SNP data (imputed to 1000 Genomes Project cosmopolitan reference panel) and linked to electronic health records (EHRs). Using a validated EHR-driven phenotype extraction algorithm, we identified VTE cases and controls and tested for an association between each SNP and VTE using unconditional logistic regression, adjusted for age, sex, stroke, site-platform combination and sickle cell risk genotype. Among 393 AA VTE cases and 4,941 AA controls, three intragenic SNPs reached genome-wide significance: LEMD3 rs138916004 (OR=3.2; p=1.3E-08), LY86 rs3804476 (OR=1.8; p=2E-08) and LOC100130298 rs142143628 (OR=4.5; p=4.4E-08); all three SNPs validated using internal cross-validation, parametric bootstrap and meta-analysis methods. LEMD3 rs138916004 and LOC100130298 rs142143628 are only present in Africans (1000G data). LEMD3 showed a significant differential expression in both NCBI Gene Expression Omnibus (GEO) and the Mayo Clinic gene expression data, LOC100130298 showed a significant differential expression only in the GEO expression data, and LY86 showed a significant differential expression only in the Mayo expression data. LEMD3 encodes for an antagonist of TGF-β-induced cell proliferation arrest. LY86 encodes for MD-1 which down-regulates the pro-inflammatory response to lipopolysaccharide; LY86 variation was previously associated with VTE in white women; LOC100130298 is a non-coding RNA gene with unknown regulatory activity in gene expression and epigenetics.Supplementary Material to this article is available online at www.thrombosis-online.com.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lizhen Chen ◽  
Zhijie Liu ◽  
Bing Zhou ◽  
Chaoliang Wei ◽  
Yu Zhou ◽  
...  

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.


Sign in / Sign up

Export Citation Format

Share Document