scholarly journals Small-scale spatial structure affects predator-prey dynamics and coexistence

2019 ◽  
Author(s):  
Anudeep Surendran ◽  
Michael Plank ◽  
Matthew Simpson

AbstractSmall-scale spatial variability can affect community dynamics in many ecological and biological processes, such as predator-prey dynamics and immune responses. Spatial variability includes short-range neighbour-dependent interactions and small-scale spatial structure, such as clustering where individuals aggregate together, and segregation where individuals are spaced apart from one another. Yet, a large class of mathematical models aimed at representing these processes ignores these factors by making a classical mean-field approximation, where interactions between individuals are assumed to occur in proportion to their average density. Such mean-field approximations amount to ignoring spatial structure. In this work, we consider an individual based model of a two-species community that is composed of consumers and resources. The model describes migration, predation, competition and dispersal of offspring, and explicitly gives rise to varying degrees of spatial structure. We compare simulation results from the individual based model with the solution of a classical mean-field approximation, and this comparison provides insight into how spatial structure can drive the system away from mean-field dynamics. Our analysis reveals that mechanisms leading to intraspecific clustering and interspecific segregation, such as short-range predation and short-range dispersal, tend to increase the size of the resource species relative to the mean-field prediction. We show that under certain parameter regimes these mechanisms lead to the extinction of consumers whereas the classical mean-field model predicts the coexistence of both species.

2020 ◽  
Author(s):  
Anudeep Surendran ◽  
Michael Plank ◽  
Matthew Simpson

AbstractAllee effects describe populations in which long-term survival is only possible if the population density is above some threshold level. A simple mathematical model of an Allee effect is one where initial densities below the threshold lead to population extinction, whereas initial densities above the threshold eventually asymptote to some positive carrying capacity density. Mean field models of population dynamics neglect spatial structure that can arise through short-range interactions, such as short-range competition and dispersal. The influence of such non mean-field effects has not been studied in the presence of an Allee effect. To address this we develop an individual-based model (IBM) that incorporates both short-range interactions and an Allee effect. To explore the role of spatial structure we derive a mathematically tractable continuum approximation of the IBM in terms of the dynamics of spatial moments. In the limit of long-range interactions where the mean-field approximation holds, our modelling framework accurately recovers the mean-field Allee threshold. We show that the Allee threshold is sensitive to spatial structure that mean-field models neglect. For example, we show that there are cases where the mean-field model predicts extinction but the population actually survives and vice versa. Through simulations we show that our new spatial moment dynamics model accurately captures the modified Allee threshold in the presence of spatial structure.


1996 ◽  
Vol 463 ◽  
Author(s):  
Jining Han ◽  
Judith Herzfeld

ABSTRACTThe effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. The method not only yields a better free energy, but also gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods short-range order increases to significant levels as the particle axial ratio increases.


Author(s):  
Anudeep Surendran ◽  
Michael J. Plank ◽  
Matthew J. Simpson

Population dynamics including a strong Allee effect describe the situation where long-term population survival or extinction depends on the initial population density. A simple mathematical model of an Allee effect is one where initial densities below the threshold lead to extinction, whereas initial densities above the threshold lead to survival. Mean-field models of population dynamics neglect spatial structure that can arise through short-range interactions, such as competition and dispersal. The influence of non-mean-field effects has not been studied in the presence of an Allee effect. To address this, we develop an individual-based model that incorporates both short-range interactions and an Allee effect. To explore the role of spatial structure we derive a mathematically tractable continuum approximation of the IBM in terms of the dynamics of spatial moments. In the limit of long-range interactions where the mean-field approximation holds, our modelling framework recovers the mean-field Allee threshold. We show that the Allee threshold is sensitive to spatial structure neglected by mean-field models. For example, there are cases where the mean-field model predicts extinction but the population actually survives. Through simulations we show that our new spatial moment dynamics model accurately captures the modified Allee threshold in the presence of spatial structure.


2013 ◽  
Vol 58 (4) ◽  
pp. 1401-1403 ◽  
Author(s):  
J.A. Bartkowska ◽  
R. Zachariasz ◽  
D. Bochenek ◽  
J. Ilczuk

Abstract In the present work, the magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the multiferroic composite was determined. The research material was ferroelectric-ferromagnetic composite on the based PZT and ferrite. We investigated the temperature dependences of the dielectric permittivity (") for the different frequency of measurement’s field. From the dielectric measurements we determined the temperature of phase transition from ferroelectric to paraelectric phase. For the theoretical description of the temperature dependence of the dielectric constant, the Hamiltonian of Alcantara, Gehring and Janssen was used. To investigate the dielectric properties of the multiferroic composite this Hamiltonian was expressed under the mean-field approximation. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.


2021 ◽  
Vol 7 (5) ◽  
pp. 69
Author(s):  
Catherine Cazelles ◽  
Jorge Linares ◽  
Mamadou Ndiaye ◽  
Pierre-Richard Dahoo ◽  
Kamel Boukheddaden

The properties of spin crossover (SCO) nanoparticles were studied for five 2D hexagonal lattice structures of increasing sizes embedded in a matrix, thus affecting the thermal properties of the SCO region. These effects were modeled using the Ising-like model in the framework of local mean field approximation (LMFA). The systematic combined effect of the different types of couplings, consisting of (i) bulk short- and long-range interactions and (ii) edge and corner interactions at the surface mediated by the matrix environment, were investigated by using parameter values typical of SCO complexes. Gradual two and three hysteretic transition curves from the LS to HS states were obtained. The results were interpreted in terms of the competition between the structure-dependent order and disorder temperatures (TO.D.) of internal coupling origin and the ligand field-dependent equilibrium temperatures (Teq) of external origin.


1997 ◽  
Vol 11 (20) ◽  
pp. 867-875 ◽  
Author(s):  
A. A. Rodríaguez ◽  
E. Medina

We study novel geometrical and transport properties of a 2D model of disordered fibre networks. To assess the geometrical structure we determine, analytically, the probability distribution for the number of fibre intersections and resulting segment sizes in the network as a function of fibre density and length. We also determine, numerically, the probability distribution of pore perimeters and areas. We find a non-monotonous behavior of the perimeter distribution whose main features can be explained by solving for two simplified models of the line network. Finally we formulate a mean field approximation to conduction, above the percolation threshold, using the derived results. Relevance of the results to fracture networks will be discussed.


Sign in / Sign up

Export Citation Format

Share Document