cGAMP loading enhances the immunogenicity of VLP vaccines

Author(s):  
Lise Chauveau ◽  
Anne Bridgeman ◽  
Tiong Kit Tan ◽  
Ryan Beveridge ◽  
Joe Frost ◽  
...  

AbstractCyclic GMP-AMP (cGAMP) is an immunostimulatory second messenger produced by cGAS that activates STING. Soluble cGAMP acts as an adjuvant when administered with antigens. cGAMP is also incorporated into enveloped virus particles during budding. We hypothesised that inclusion of the adjuvant cGAMP within viral vaccine vectors would promote adaptive immunity against vector antigens. We immunised mice with virus-like particles (VLPs) containing the HIV-1 Gag protein and VSV-G. Inclusion of cGAMP within these VLPs augmented splenic VLP-specific CD4 and CD8 T cell responses. It also increased VLP- and VSV-G-specific serum antibody titres and enhanced in vitro virus neutralisation. The superior antibody response was accompanied by increased numbers of T follicular helper cells in draining lymph nodes. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induced high titres of influenza A virus neutralising antibodies and conferred protection following subsequent influenza A virus challenge. Together, these results show that incorporating cGAMP into VLPs enhances their immunogenicity, making cGAMP-VLPs an attractive platform for novel vaccination strategies.Short summarycGAMP is an innate immune signalling molecule that can be transmitted between cells by inclusion in enveloped virions. This study demonstrates enhanced immunogenicity of HIV-derived virus-like particles containing cGAMP. Viral vectors loaded with cGAMP may thus be potent vaccines.

2008 ◽  
Vol 83 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Zhongying Chen ◽  
Celia Santos ◽  
Amy Aspelund ◽  
Laura Gillim-Ross ◽  
Hong Jin ◽  
...  

ABSTRACT Avian influenza A virus A/teal/HK/W312/97 (H6N1) possesses seven gene segments that are highly homologous to those of highly pathogenic human influenza H5N1 viruses, suggesting that a W312-like H6N1 virus might have been involved in the generation of the A/HK/97 H5N1 viruses. The continuous circulation and reassortment of influenza H6 subtype viruses in birds highlight the need to develop an H6 vaccine to prevent potential influenza pandemics caused by the H6 viruses. Based on the serum antibody cross-reactivity data obtained from 14 different H6 viruses from Eurasian and North American lineages, A/duck/HK/182/77, A/teal/HK/W312/97, and A/mallard/Alberta/89/85 were selected to produce live attenuated H6 candidate vaccines. Each of the H6 vaccine strains is a 6:2 reassortant ca virus containing HA and NA gene segments from an H6 virus and the six internal gene segments from cold-adapted A/Ann Arbor/6/60 (AA ca), the master donor virus that is used to make live attenuated influenza virus FluMist (intranasal) vaccine. All three H6 vaccine candidates exhibited phenotypic properties of temperature sensitivity (ts), ca, and attenuation (att) conferred by the internal gene segments from AA ca. Intranasal administration of a single dose of the three H6 ca vaccine viruses induced neutralizing antibodies in mice and ferrets and fully protected mice and ferrets from homologous wild-type (wt) virus challenge. Among the three H6 vaccine candidates, the A/teal/HK/W312/97 ca virus provided the broadest cross-protection against challenge with three antigenically distinct H6 wt viruses. These data support the rationale for further evaluating the A/teal/HK/W312/97 ca vaccine in humans.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 64 ◽  
Author(s):  
Jorma Hinkula ◽  
Sanna Nyström ◽  
Claudia Devito ◽  
Andreas Bråve ◽  
Steven E. Applequist

Background: Vaccination is commonly used to prevent and control influenza infection in humans. However, improvements in the ease of delivery and strength of immunogenicity could markedly improve herd immunity. The aim of this pre-clinical study is to test the potential improvements to existing intranasal delivery of formalin-inactivated whole Influenza A vaccines (WIV) by formulation with a cationic lipid-based adjuvant (N3). Additionally, we combined WIV and N3 with a DNA-encoded TLR5 agonist secreted flagellin (pFliC(-gly)) as an adjuvant, as this adjuvant has previously been shown to improve the effectiveness of plasmid-encoded DNA antigens. Methods: Outbred and inbred mouse strains were intranasally immunized with unadjuvanted WIV A/H1N1/SI 2006 or WIV that was formulated with N3 alone. Additional groups were immunized with WIV and N3 adjuvant combined with pFliC(-gly). Homo and heterotypic humoral anti-WIV immune responses were assayed from serum and lung by ELISA and hemagglutination inhibition assay. Homo and heterotypic cellular immune responses to WIV and Influenza A NP were also determined. Results: WIV combined with N3 lipid adjuvant the pFliC(-gly) significantly increased homotypic influenza specific serum antibody responses (>200-fold), increased the IgG2 responses, indicating a mixed Th1/Th2-type immunity, and increased the HAI-titer (>100-fold). Enhanced cell-mediated IFNγ secreting influenza directed CD4+ and CD8+ T cell responses (>40-fold) to homotypic and heterosubtypic influenza A virus and peptides. Long-term and protective immunity was obtained. Conclusions: These results indicate that inactivated influenza virus that was formulated with N3 cationic adjuvant significantly enhanced broad systemic and mucosal influenza specific immune responses. These responses were broadened and further increased by incorporating DNA plasmids encoding FliC from S. typhimurum as an adjuvant providing long lasting protection against heterologous Influenza A/H1N1/CA09pdm virus challenge.


2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Guihong Yang ◽  
Huipeng Huang ◽  
Mengyao Tang ◽  
Zifeng Cai ◽  
Cuiqin Huang ◽  
...  

Abstract The peptide neuromedin B (NMB) and its receptor (NMBR) represent a system (NMB/NMBR) of neuromodulation. Here, it was demonstrated that the expression of NMBR in cells or murine lung tissues was clearly upregulated in response to H1N1/PR8 influenza A virus infection. Furthermore, the in vitro and in vivo activities of NMB/NMBR during PR8 infection were investigated. It was observed that A549 cells lacking endogenous NMBR were more susceptible to virus infection than control cells, as evidenced by the increased virus production in the cells. Interestingly, a significant decrease in IFN-α and increased IL-6 expression were observed in these cells. The role of this system in innate immunity against PR8 infection was probed by treating mice with NMB. The NMB-treated mice were less susceptible to virus challenge, as evidenced by increased survival, increased body weight, and decreased viral NP expression compared with the control animals. Additionally, the results showed that exogenous NMB not only enhanced IFN-α expression but also appeared to inhibit the expression of NP and IL-6 in PR8-infected cells and animals. As expected, opposing effects were observed in the NMBR antagonist-treated cells and mice, which further confirmed the effects of NMB. Together, these data suggest that NMB/NMBR may be an important component of the host defence against influenza A virus infection. Thus, these proteins may serve as promising candidates for the development of novel antiviral drugs.


2017 ◽  
Vol 91 (7) ◽  
Author(s):  
Silvie Van den Hoecke ◽  
Katrin Ehrhardt ◽  
Annasaheb Kolpe ◽  
Karim El Bakkouri ◽  
Lei Deng ◽  
...  

ABSTRACT The ectodomain of matrix protein 2 is a universal influenza A virus vaccine candidate that provides protection through antibody-dependent effector mechanisms. Here we compared the functional engagement of Fcγ receptor (FcγR) family members by two M2e-specific monoclonal antibodies (MAbs), MAb 37 (IgG1) and MAb 65 (IgG2a), which recognize a similar epitope in M2e with similar affinities. The binding of MAb 65 to influenza A virus-infected cells triggered all three activating mouse Fcγ receptors in vitro, whereas MAb 37 activated only FcγRIII. The passive transfer of MAb 37 or MAb 65 in wild-type, Fcer1g −/−, Fcgr3 −/−, and Fcgr1 −/− Fcgr3 −/− BALB/c mice revealed the importance of these receptors for protection against influenza A virus challenge, with a clear requirement of FcγRIII for IgG1 MAb 37 being found. We also report that FcγRIV contributes to protection by M2e-specific IgG2a antibodies. IMPORTANCE There is increased awareness that protection by antibodies directed against viral antigens is also mediated by the Fc domain of these antibodies. These Fc-mediated effector functions are often missed in clinical assays, which are used, for example, to define correlates of protection induced by vaccines. The use of antibodies to prevent and treat infectious diseases is on the rise and has proven to be a promising approach in our battle against newly emerging viral infections. It is now also realized that Fcγ receptors significantly enhance the in vivo protective effect of broadly neutralizing antibodies directed against the conserved parts of the influenza virus hemagglutinin. We show here that two M2e-specific monoclonal antibodies with close to identical antigen-binding specificities and affinities have a very different in vivo protective potential that is controlled by their capacity to interact with activating Fcγ receptors.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1301
Author(s):  
Ivonne Melano ◽  
Li-Lan Kuo ◽  
Yan-Chung Lo ◽  
Po-Wei Sung ◽  
Ni Tien ◽  
...  

Amino acids have been implicated with virus infection and replication. Here, we demonstrate the effects of two basic amino acids, arginine and lysine, and their ester derivatives on infection of two enveloped viruses, SARS-CoV-2, and influenza A virus. We found that lysine and its ester derivative can efficiently block infection of both viruses in vitro. Furthermore, the arginine ester derivative caused a significant boost in virus infection. Studies on their mechanism of action revealed that the compounds potentially disturb virus uncoating rather than virus attachment and endosomal acidification. Our findings suggest that lysine supplementation and the reduction of arginine-rich food intake can be considered as prophylactic and therapeutic regimens against these viruses while also providing a paradigm for the development of broad-spectrum antivirals.


1944 ◽  
Vol 79 (6) ◽  
pp. 633-647 ◽  
Author(s):  
William F. Friedewald

A study of the PR8, Christie, Talmey, W.S., and swine strains of influenza A virus by means of antibody absorption tests revealed the following findings: 1. Serum antibody could be specifically absorbed with allantoic fluid containing influenza virus or, more effectively, with concentrated suspensions of virus obtained from allantoic fluid by high-speed centrifugation or by the red cell adsorption and elution technique. Normal allantoic fluid, or the centrifugalized sediment therefrom, failed to absorb antibodies. Influenza B virus (Lee) caused no detectable absorption of antibody from antisera directed against influenza A virus strains, but it specifically absorbed antibody from Lee antisera. 2. The neutralizing, agglutination-inhibiting, and complement-fixing anti-bodies in ferret antisera were completely absorbed only by the homologous virus strain, even though 2 absorptions were carried out with large amounts of heterologous virus strains. 3. PR8 virus appeared to have the broadest range of specific antigenic components for it completely absorbed the heterologous antibodies in Christie and W.S. antisera and left only those antibodies which reacted with the respective homologous strains. The other virus strains (Christie, Talmey, W.S., swine) were more specific in the absorption of heterologous antibodies and completely removed only those antibodies which reacted with the absorbing virus. 4. The absorption tests revealed a higher degree of specificity and individuality of the virus strains than the various cross reactions previously reported. The strain specificity of PR8 virus was equally manifest in absorption tests with ferret sera and with human sera following vaccination. 5. The amount of homologous antibody remaining in a PR8 ferret serum after absorption with PR8 virus, obtained by the red cell adsorption and elution method, varied inversely as the concentration of virus used for absorption. A given concentration of virus, however, absorbed a greater percentage of neutralizing antibodies than either agglutination-inhibiting or complement-fixing antibodies.


Biochimie ◽  
2021 ◽  
Author(s):  
A.A. Shaldzhyan ◽  
Y.A. Zabrodskaya ◽  
I.L. Baranovskaya ◽  
M.V. Sergeeva ◽  
A.N. Gorshkov ◽  
...  

2014 ◽  
Vol 5 ◽  
Author(s):  
Emanuel Haasbach ◽  
Carmen Hartmayer ◽  
Alice Hettler ◽  
Alicja Sarnecka ◽  
Ulrich Wulle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document