scholarly journals Silencing of Mu elements in maize involves distinct populations of small RNAs and distinct patterns of DNA methylation

2020 ◽  
Author(s):  
Diane Burgess ◽  
Meixia Zhao ◽  
Sang Yeol Kim ◽  
Damon Lisch

Epigenetic changes involve changes in gene expression that can be heritably transmitted to daughter cells in the absence of changes in DNA sequence. Epigenetics has been implicated in phenomena as diverse as development, stress response and carcinogenesis. A significant challenge facing those interested in investigating epigenetic phenomena is determining causal relationships between DNA methylation, specific classes of small RNAs and associated changes in gene expression. Because they are the primary targets of epigenetic silencing in plants and, when active, are often targeted for de novo silencing, transposable elements (TEs) represent a valuable source of information about these relationships. We use a naturally occurring system in which a single TE can be heritably silenced by a single derivative of that TE. By using this system it is possible to unravel causal relationships between different size classes of small RNAs, patterns of DNA methylation and heritable silencing. Here, we show that the long terminal inverted repeats (TIRs) within Zea mays MuDR transposons are targeted by distinct classes of small RNAs during epigenetic silencing that are dependent on distinct silencing pathways. Further, these small RNAs target distinct regions of the TIRs, resulting in different patterns of cytosine methylation with different functional consequences with respect to epigenetic silencing and heritability of that silencing.

Genetics ◽  
2020 ◽  
Vol 215 (2) ◽  
pp. 379-391 ◽  
Author(s):  
Diane Burgess ◽  
Hong Li ◽  
Meixia Zhao ◽  
Sang Yeol Kim ◽  
Damon Lisch

Transposable elements (TEs) are a ubiquitous feature of plant genomes. Because of the threat they post to genome integrity, most TEs are epigenetically silenced. However, even closely related plant species often have dramatically different populations of TEs, suggesting periodic rounds of activity and silencing. Here, we show that the process of de novo methylation of an active element in maize involves two distinct pathways, one of which is directly implicated in causing epigenetic silencing and one of which is the result of that silencing. Epigenetic changes involve changes in gene expression that can be heritably transmitted to daughter cells in the absence of changes in DNA sequence. Epigenetics has been implicated in phenomena as diverse as development, stress response, and carcinogenesis. A significant challenge facing those interested in investigating epigenetic phenomena is determining causal relationships between DNA methylation, specific classes of small RNAs, and associated changes in gene expression. Because they are the primary targets of epigenetic silencing in plants and, when active, are often targeted for de novo silencing, TEs represent a valuable source of information about these relationships. We use a naturally occurring system in which a single TE can be heritably silenced by a single derivative of that TE. By using this system it is possible to unravel causal relationships between different size classes of small RNAs, patterns of DNA methylation, and heritable silencing. Here, we show that the long terminal inverted repeats within Zea mays MuDR transposons are targeted by distinct classes of small RNAs during epigenetic silencing that are dependent on distinct silencing pathways, only one of which is associated with transcriptional silencing of the transposon. Further, these small RNAs target distinct regions of the terminal inverted repeats, resulting in different patterns of cytosine methylation with different functional consequences with respect to epigenetic silencing and the heritability of that silencing.


2021 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

AbstractThe plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and facilitates meiosis. Why reprogramming is limited to the germline and how specific genes are chosen is unknown. Here, we demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by germline-specific siRNAs transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) via activity of the tapetum-specific chromatin remodeler CLASSY3. Remarkably, tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Finally, we demonstrate that these nurse cell-derived siRNAs (niRNAs) silence germline transposons, thereby safeguarding genome integrity. Our results reveal that tapetal niRNAs are sufficient to reconstitute germline methylation patterns and drive extensive, functional methylation reprogramming analogous to piRNA-mediated reprogramming in animal germlines.


2018 ◽  
Author(s):  
Komivi Dossa ◽  
Marie Ali Mmadi ◽  
Rong Zhou ◽  
Qi Zhou ◽  
Mei Yang ◽  
...  

AbstractDNA methylation is a heritable epigenetic mechanism that participates in gene regulation under abiotic stresses in plants. Sesame (Sesamum indicum L.) is typically considered a drought-tolerant crop but highly susceptible to waterlogging, a property attributed to its presumed origin in Africa or India. Understanding DNA methylation patterns in sesame under drought and waterlogging conditions can provide insights into the regulatory mechanisms underlying its contrasting responses to these principal abiotic stresses. Here, we combined Methylation-Sensitive Amplified Polymorphism and transcriptome analyses to profile cytosine methylation patterns, gene expression alteration, and their interplay in drought-tolerant and waterlogging-tolerant sesame genotypes under control, stress and recovery conditions. Our data showed that drought stress strongly induced de novo methylation (DNM) whereas most of the loci were demethylated (DM) during the recovery phase. In contrast, waterlogging decreased the level of methylation under stress but during the recovery phase, both DM and DNM were concomitantly deployed. In both stresses, the differentially expressed genes (DEGs) were highly correlated with the methylation patterns. We observed that DM was associated with the up-regulation of the DEGs while DNM was correlated with the down-regulation of the DEGs. In addition, we sequenced 44 differentially methylated regions of which 90% overlapped with the promoters and coding sequences of the DEGs. Altogether, we demonstrated that sesame has divergent epigenetic programs that respond to drought and waterlogging stresses. Our results also highlighted the possible interplay among DNA methylation and gene expression, which may modulate the contrasting responses to drought and waterlogging in sesame.


2016 ◽  
Vol 90 (16) ◽  
pp. 7529-7540 ◽  
Author(s):  
Jamie N. Jackel ◽  
Jessica M. Storer ◽  
Tami Coursey ◽  
David M. Bisaro

ABSTRACTIn plants, RNA-directed DNA methylation (RdDM) employs small RNAs to target enzymes that methylate cytosine residues. Cytosine methylation and dimethylation of histone 3 lysine 9 (H3K9me2) are often linked. Together they condition an epigenetic defense that results in chromatin compaction and transcriptional silencing of transposons and viral chromatin. Canonical RdDM (Pol IV-RdDM), involving RNA polymerases IV and V (Pol IV and Pol V), was believed to be necessary to establish cytosine methylation, which in turn could recruit H3K9 methyltransferases. However, recent studies have revealed that a pathway involving Pol II and RNA-dependent RNA polymerase 6 (RDR6) (RDR6-RdDM) is likely responsible for establishing cytosine methylation at naive loci, while Pol IV-RdDM acts to reinforce and maintain it. We used the geminivirusBeet curly top virus(BCTV) as a model to examine the roles of Pol IV and Pol V in establishing repressive viral chromatin methylation. As geminivirus chromatin is formedde novoin infected cells, these viruses are unique models for processes involved in the establishment of epigenetic marks. We confirm that Pol IV and Pol V are not needed to establish viral DNA methylation but are essential for its amplification. Remarkably, however, both Pol IV and Pol V are required for deposition of H3K9me2 on viral chromatin. Our findings suggest that cytosine methylation alone is not sufficient to triggerde novodeposition of H3K9me2 and further that Pol IV-RdDM is responsible for recruiting H3K9 methyltransferases to viral chromatin.IMPORTANCEIn plants, RNA-directed DNA methylation (RdDM) uses small RNAs to target cytosine methylation, which is often linked to H3K9me2. These epigenetic marks silence transposable elements and DNA virus genomes, but how they are established is not well understood. Canonical RdDM, involving Pol IV and Pol V, was thought to establish cytosine methylation that in turn could recruit H3K9 methyltransferases, but recent studies compel a reevaluation of this view. We used BCTV to investigate the roles of Pol IV and Pol V in chromatin methylation. We found that both are needed to amplify, but not to establish, DNA methylation. However, both are required for deposition of H3K9me2. Our findings suggest that cytosine methylation is not sufficient to recruit H3K9 methyltransferases to naive viral chromatin and further that Pol IV-RdDM is responsible.


2018 ◽  
Author(s):  
Jana Sperschneider ◽  
Ashley W. Jones ◽  
Jamila Nasim ◽  
Bo Xu ◽  
Silke Jacques ◽  
...  

AbstractBackgroundSilencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive.ResultsWe use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (∼250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5’ uracil derived from genes. In contrast, the late wave sRNAs are mainly 22 nt sRNAs with a 5’ adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes.ConclusionsWe conclude that rust fungi use an epigenetic silencing pathway that resembles RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 343-343
Author(s):  
Kevin G. Ford ◽  
Paul J. Hurd ◽  
Andrew J. Bannister ◽  
Tony Kouzarides ◽  
Alexander E. Smith

Abstract The ability to impose exogenous targeted epigenetic changes in the genome represents an attractive goal in gene therapy for the heritable repression of target genes, while potentially enabling the generation and subsequent study of the downstream effects of de novo epigenetic events, which are known to occur in disease. Here we demonstrate the ability of zinc-finger peptides to deliver DNA cytosine methylation in vivo to a genomic target promoter, when expressed as fusions with a mutant prokaryotic DNA cytosine methyltransferase enzyme, thus mimicking cellular de novo methylation events. We show for the first time targeted gene silencing in response to directed DNA cytosine methylation via initiation of a repressive chromatin signature at a targeted genomic locus, characterised by elevation of histone H3K9Me2 and reduction of H3K4Me3 levels at that region. This transcriptional repression is maintained in the absence of sustained targeted methyltransferase action, confirming epigenetic maintenance by the cells own machinery. The inherited DNA methylation pattern is restricted to specific target sites, suggesting that the establishment of repressive chromatin structure does not drive further de novo DNA methylation in this system. Therefore, we demonstrate for the first time, targeted DNA methyltransferases as potential tools for the exogenous and heritable control of gene expression at the chromosomal level, while providing the clearest and most direct confirmation to date of the functional and mechanistic consequences of de novo DNA methylation in the cell. This work represents an important step towards the longer term goal of controlling gene expression through the inheritance of a repressive DNA state, as well as providing a valuable tool for studying spatial and temporal issues associated with ‘genuine’ de novo methylation, on transcription and chromatin structure.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. eabh0556 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

The plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and regulates meiosis. Here, we reveal the molecular mechanism underlying this reprogramming. We demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by 24-nucleotide small interfering RNAs (siRNAs) transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) through activity of CLSY3, a chromatin remodeler absent in other anther cells. Tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Tapetum-derived siRNAs also silence germline transposons, safeguarding genome integrity. Our results reveal that tapetal siRNAs are sufficient to reconstitute germline methylation patterns and drive functional methylation reprogramming throughout the male germline.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jana Sperschneider ◽  
Ashley W. Jones ◽  
Jamila Nasim ◽  
Bo Xu ◽  
Silke Jacques ◽  
...  

Abstract Background Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive. Results We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5′ uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5′ adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes. Conclusions We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.


2021 ◽  
Vol 5 (10) ◽  
pp. 1382-1393
Author(s):  
Xinyu Jiang ◽  
Qingxin Song ◽  
Wenxue Ye ◽  
Z. Jeffrey Chen

AbstractDuring evolution successful allopolyploids must overcome ‘genome shock’ between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsisthaliana (TT) and Arabidopsisarenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Xu ◽  
Jiejun Shi ◽  
Xiaodong Cui ◽  
Ya Cui ◽  
Jingyi Jessica Li ◽  
...  

AbstractPromoter DNA methylation is a well-established mechanism of transcription repression, though its global correlation with gene expression is weak. This weak correlation can be attributed to the failure of current methylation quantification methods to consider the heterogeneity among sequenced bulk cells. Here, we introduce Cell Heterogeneity–Adjusted cLonal Methylation (CHALM) as a methylation quantification method. CHALM improves understanding of the functional consequences of DNA methylation, including its correlations with gene expression and H3K4me3. When applied to different methylation datasets, the CHALM method enables detection of differentially methylated genes that exhibit distinct biological functions supporting underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document