scholarly journals The stem rust fungus Puccinia graminis f. sp. tritici induces centromeric small RNAs during late infection that are associated with genome-wide DNA methylation

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jana Sperschneider ◽  
Ashley W. Jones ◽  
Jamila Nasim ◽  
Bo Xu ◽  
Silke Jacques ◽  
...  

Abstract Background Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive. Results We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5′ uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5′ adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes. Conclusions We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.

2018 ◽  
Author(s):  
Jana Sperschneider ◽  
Ashley W. Jones ◽  
Jamila Nasim ◽  
Bo Xu ◽  
Silke Jacques ◽  
...  

AbstractBackgroundSilencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive.ResultsWe use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (∼250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5’ uracil derived from genes. In contrast, the late wave sRNAs are mainly 22 nt sRNAs with a 5’ adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes.ConclusionsWe conclude that rust fungi use an epigenetic silencing pathway that resembles RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.


Genetics ◽  
2020 ◽  
Vol 215 (2) ◽  
pp. 379-391 ◽  
Author(s):  
Diane Burgess ◽  
Hong Li ◽  
Meixia Zhao ◽  
Sang Yeol Kim ◽  
Damon Lisch

Transposable elements (TEs) are a ubiquitous feature of plant genomes. Because of the threat they post to genome integrity, most TEs are epigenetically silenced. However, even closely related plant species often have dramatically different populations of TEs, suggesting periodic rounds of activity and silencing. Here, we show that the process of de novo methylation of an active element in maize involves two distinct pathways, one of which is directly implicated in causing epigenetic silencing and one of which is the result of that silencing. Epigenetic changes involve changes in gene expression that can be heritably transmitted to daughter cells in the absence of changes in DNA sequence. Epigenetics has been implicated in phenomena as diverse as development, stress response, and carcinogenesis. A significant challenge facing those interested in investigating epigenetic phenomena is determining causal relationships between DNA methylation, specific classes of small RNAs, and associated changes in gene expression. Because they are the primary targets of epigenetic silencing in plants and, when active, are often targeted for de novo silencing, TEs represent a valuable source of information about these relationships. We use a naturally occurring system in which a single TE can be heritably silenced by a single derivative of that TE. By using this system it is possible to unravel causal relationships between different size classes of small RNAs, patterns of DNA methylation, and heritable silencing. Here, we show that the long terminal inverted repeats within Zea mays MuDR transposons are targeted by distinct classes of small RNAs during epigenetic silencing that are dependent on distinct silencing pathways, only one of which is associated with transcriptional silencing of the transposon. Further, these small RNAs target distinct regions of the terminal inverted repeats, resulting in different patterns of cytosine methylation with different functional consequences with respect to epigenetic silencing and the heritability of that silencing.


2020 ◽  
Author(s):  
Diane Burgess ◽  
Meixia Zhao ◽  
Sang Yeol Kim ◽  
Damon Lisch

Epigenetic changes involve changes in gene expression that can be heritably transmitted to daughter cells in the absence of changes in DNA sequence. Epigenetics has been implicated in phenomena as diverse as development, stress response and carcinogenesis. A significant challenge facing those interested in investigating epigenetic phenomena is determining causal relationships between DNA methylation, specific classes of small RNAs and associated changes in gene expression. Because they are the primary targets of epigenetic silencing in plants and, when active, are often targeted for de novo silencing, transposable elements (TEs) represent a valuable source of information about these relationships. We use a naturally occurring system in which a single TE can be heritably silenced by a single derivative of that TE. By using this system it is possible to unravel causal relationships between different size classes of small RNAs, patterns of DNA methylation and heritable silencing. Here, we show that the long terminal inverted repeats (TIRs) within Zea mays MuDR transposons are targeted by distinct classes of small RNAs during epigenetic silencing that are dependent on distinct silencing pathways. Further, these small RNAs target distinct regions of the TIRs, resulting in different patterns of cytosine methylation with different functional consequences with respect to epigenetic silencing and heritability of that silencing.


2014 ◽  
Vol 24 (10) ◽  
pp. 1613-1623 ◽  
Author(s):  
Weishi Yu ◽  
Carl McIntosh ◽  
Ryan Lister ◽  
Iris Zhu ◽  
Yixing Han ◽  
...  

1969 ◽  
Vol 47 (11) ◽  
pp. 1816-1817 ◽  
Author(s):  
P. G. Williams

Hyphae of the wheat stem rust fungus form short, lateral projections under conditions of artificial culture that are unfavorable for saprophytic growth. It is suggested that the structures are homologous with the haustoria of intercellular rust mycelium.


1967 ◽  
Vol 45 (5) ◽  
pp. 555-563 ◽  
Author(s):  
P. K. Bhattacharya ◽  
Michael Shaw

Wheat leaves were detached 6 days after inoculation with the stem rust fungus (Puccinia graminis var. tritici Erikss. and Henn.) and fed with tritiated leucine, cytidine, uridine, or thymidine. Mesophyll cells in infected zones incorporated more leucine into protein and more cytidine and uridine into RNA than did cells in adjacent uninfected tissue. Leucine, cytidine, and uridine were also heavily incorporated by fungal mycelium and developing uredospores. Grain counts over host nuclei in the infected zone were two to three-fold of those over nuclei in adjacent uninfected zones. There was no detectable incorporation of thymidinemethyl-3H into either the fungus or the host cells. The results are discussed.


2017 ◽  
Vol 217 (2) ◽  
pp. 540-546 ◽  
Author(s):  
Muluneh Tamiru ◽  
Thomas J. Hardcastle ◽  
Mathew G. Lewsey

2020 ◽  
Vol 48 (8) ◽  
pp. 4081-4099 ◽  
Author(s):  
Alex I Finnegan ◽  
Somang Kim ◽  
Hu Jin ◽  
Michael Gapinske ◽  
Wendy S Woods ◽  
...  

Abstract Cytosine methylation is a ubiquitous modification in mammalian DNA generated and maintained by several DNA methyltransferases (DNMTs) with partially overlapping functions and genomic targets. To systematically dissect the factors specifying each DNMT’s activity, we engineered combinatorial knock-in of human DNMT genes in Komagataella phaffii, a yeast species lacking endogenous DNA methylation. Time-course expression measurements captured dynamic network-level adaptation of cells to DNMT3B1-induced DNA methylation stress and showed that coordinately modulating the availability of S-adenosyl methionine (SAM), the essential metabolite for DNMT-catalyzed methylation, is an evolutionarily conserved epigenetic stress response, also implicated in several human diseases. Convolutional neural networks trained on genome-wide CpG-methylation data learned distinct sequence preferences of DNMT3 family members. A simulated annealing interpretation method resolved these preferences into individual flanking nucleotides and periodic poly(A) tracts that rotationally position highly methylated cytosines relative to phased nucleosomes. Furthermore, the nucleosome repeat length defined the spatial unit of methylation spreading. Gene methylation patterns were similar to those in mammals, and hypo- and hypermethylation were predictive of increased and decreased transcription relative to control, respectively, in the absence of mammalian readers of DNA methylation. Introducing controlled epigenetic perturbations in yeast thus enabled characterization of fundamental genomic features directing specific DNMT3 proteins.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2329-2329
Author(s):  
Mira Jeong ◽  
Min Luo ◽  
Deqiang Sun ◽  
Gretchen Darlington ◽  
Rebecca Hannah ◽  
...  

Abstract Abstract 2329 Age is the most important risk factor for myelodysplastic syndrome (MDS), a premalignant state that transforms into acute myelogenous leukemia in one third of cases. Indeed with normal aging, hematopoietic stem cell (HSC) regenerative potential diminishes and differentiation skews from lymphopoiesis toward myelopoiesis. The expansion in the HSC pool with aging provides sufficient but abnormal blood production, and animals experience a decline in immune function. Previous studies from our lab established that the DNA methyltransferase 3a (Dnmt3a) enables efficient differentiation by critically regulating epigenetic silencing of HSC genes (Challen et al. 2012) Interestingly, Dnmt3a expression is decreased in old HSCs, leading us to hypothesize that epigenetic changes in old HSCs may partially mimic the changes seen in Dnmt3a mutant HSCs. We propose that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging and MDS, which is characterized by frequent epigenetic abnormalities. In this study, we investigated genome-wide DNA methylation and transcripts by whole genome bisulfite sequencing (WGBS) and transcriptome sequencing (mRNA-seq)in young and old HSCs. For WGBS, we generated ∼600M raw reads resulting in ∼ 60 raw Gb of paired-end sequence data and aligned them to either strand of the reference genome (mm9), providing an average 40-fold sequencing depth. Globally, there was a 1.1% difference in the DNA methylation between young and old HSCs. Of these differences, 38% (172,609) of the CpG dinucleotides were hypo-methylated, and 62% (275,557) were hyper-methylated in old HSCs. To understand where the methylation changes predominantly occurred, the genome was subdivided into 77 features. Among these features, SINEs, especially Alu elements, exhibited the highest level of DNA methylation (90.94% in young HSCs, and 91.87% in old HSCs). CpG islands (CGIs) adjacent to the transcription start sites (TSS) exhibited the lowest level of DNA methylation (2.02% in young HSCs, and 2.11% in old HSCs). Interestingly strong hypo-methylation was observed in ribosomal RNA regions (68.04% in young HSCs, 59.04% in old HSCs), and hyper-methylation was observed in LINEL1 repetitive elements (88.62% in young HSCs, 90.12% in old HSCs). Moreover, the examination of differentially methylated promoters identified enrichment of developmentally important transcription factors such as Gata2, Runx1, Gfi1b, Erg, Tal1 Eto2, Cebpa and Pu.1. Additionally, we compare our ∼10,000 differentially methylation regions (DMRs, regions with clustered DNA methylation changes) with a chip-seq data set containing binding of 160 ChIP-seq analyses of hematopoietic transcription factors in different hematopoietic cells. We found significant overlaps between DMRs and transcription factor binding regions. We found DMRs which were hypermethylated showed association with differentiation-promoting Ets factors, in particular Pu.1 from a range of different blood cell types. In contrast, hypomethylated DMRs showed associations with HSC-associated transcription factors such as Scl and Gata2. Further examination of the differentially methylated gene bodies, intragenic and intergenic DMRs identified some previously noted targets for epigenetic silencing or alteration in AML and also novel transcripts including long non-coding RNAs (lincRNA) and upstream regulatory elements (URE). We found significant correlation between RNA-seq expression and DMRs within +1kb upstream of TSS. RNA-sequencing provided complementary and distinct information about HSC aging. We identified differentially expressed genes, novel RNA transcripts, differential promoter, coding sequence, and splice variant usage with age. Gene set enrichment analysis of up- and down- regulated genes, revealed ribosomal protein and RNA metabolism as critical contributors to HSC aging. In conclusion, our study marks a milestone in the mouse HSC epigenome, reporting the first complete methylome and transcriptome of pure HSC using whole-genome bisulfite sequencing and RNA-seq. These provide novel information about the magnitude and specificity of age-related epigenetic changes in a well-defined HSC population. Understanding the roles of DNA methylation and transcription in normal HSC function will allow for greater therapeutic exploitation of HSCs in the clinic. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document