scholarly journals Quantitative genetics of temperature performance curves of Neurospora crassa

2020 ◽  
Author(s):  
Neda N. Moghadam ◽  
Karendeep Sidhu ◽  
Pauliina A. M. Summanen ◽  
Tarmo Ketola ◽  
Ilkka Kronholm

AbstractEarth’s temperature is increasing due to anthropogenic CO2 emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism’s physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.

2018 ◽  
Author(s):  
Dimitrios - Georgios Kontopoulos ◽  
Erik van Sebille ◽  
Michael Lange ◽  
Gabriel Yvon-Durocher ◽  
Timothy G. Barraclough ◽  
...  

AbstractTo better predict how populations and communities respond to climatic temperature variation, it is necessary to understand how the shape of the response of fitness-related traits to temperature evolves (the thermal performance curve). Currently, there is disagreement about the extent to which the evolution of thermal performance curves is constrained. One school of thought has argued for the prevalence of thermodynamic constraints through enzyme kinetics, whereas another argues that adaptation can—at least partly—overcome such constraints. To shed further light on this debate, we perform a phylogenetic meta-analysis of the thermal performance curves of growth rate of phytoplankton—a globally important functional group—, controlling for environmental effects (habitat type and thermal regime). We find that thermodynamic constraints have a minor influence on the shape of the curve. In particular, we detect a very weak increase of maximum performance with the temperature at which the curve peaks, suggesting a weak “hotter-is-better” constraint. Also, instead of a constant thermal sensitivity of growth across species, as might be expected from strong constraints, we find that all aspects of the thermal performance curve evolve along the phylogeny. Our results suggest that phytoplankton thermal performance curves adapt to thermal environments largely in the absence of hard thermodynamic constraints.


2014 ◽  
Vol 62 (6) ◽  
pp. 448 ◽  
Author(s):  
Sophie G. Arnall ◽  
Gerald Kuchling ◽  
Nicola J. Mitchell

Thermal performance curves are useful for predicting how organisms might respond to environmental change, and are becoming increasingly applicable for ectothermic animals threatened by climate change. Here we present a thermal performance curve for the critically endangered western swamp turtle (Pseudemydura umbrina) based upon measurements of O2 consumption and CO2 production obtained by flow-through respirometry at temperatures between 15 and 30°C. Standard metabolic rate was significantly higher at 30°C (0.030 mL g–1 h–1 O2, 0.021 mL g–1 h–1 CO2) than at 20°C (0.007 mL g–1 h–1 O2, 0.006 mL g–1 h–1 CO2) and the 20−30°C Q10 for O2 and CO2 were 4.60 and 3.55 respectively. Oxygen consumption rates at 15°C and 25°C were 0.002 (±0.000) and 0.018 (±0.000) mL g–1 h–1, with a corresponding Q10 of 9.21. Beyond ~30°C there was a decline in physiological performance, which was supported by activity patterns reported for P. umbrina in the literature.


2018 ◽  
Vol 285 (1878) ◽  
pp. 20180697 ◽  
Author(s):  
Michael L. Logan ◽  
John David Curlis ◽  
Anthony L. Gilbert ◽  
Donald B. Miles ◽  
Albert K. Chung ◽  
...  

Ectothermic species are particularly sensitive to changes in temperature and may adapt to changes in thermal environments through evolutionary shifts in thermal physiology or thermoregulatory behaviour. Nevertheless, the heritability of thermal traits, which sets a limit on evolutionary potential, remains largely unexplored. In this study, we captured brown anole lizards ( Anolis sagrei ) from two populations that occur in contrasting thermal environments. We raised offspring from these populations in a laboratory common garden and compared the shape of their thermal performance curves to test for genetic divergence in thermal physiology. Thermal performance curves differed between populations in a common garden in ways partially consistent with divergent patterns of natural selection experienced by the source populations, implying that they had evolved in response to selection. Next, we estimated the heritability of thermal performance curves and of several traits related to thermoregulatory behaviour. We did not detect significant heritability in most components of the thermal performance curve or in several aspects of thermoregulatory behaviour, suggesting that contemporary selection is unlikely to result in rapid evolution. Our results indicate that the response to selection may be slow in the brown anole and that evolutionary change is unlikely to keep pace with current rates of environmental change.


2021 ◽  
Author(s):  
Greg M. Walter ◽  
Delia Terranova ◽  
James Clark ◽  
Salvatore Cozzolino ◽  
Antonia Cristaudo ◽  
...  

AbstractGenetic correlations between traits are expected to constrain the rate of adaptation by concentrating genetic variation in certain phenotypic directions, which are unlikely to align with the direction of selection in novel environments. However, if genotypes vary in their response to novel environments, then plasticity could create changes in genetic variation that will determine whether genetic constraints to adaptation arise. We tested this hypothesis by mating two species of closely related, but ecologically distinct, Sicilian daisies (Senecio, Asteraceae) using a quantitative genetics breeding design. We planted seeds of both species across an elevational gradient that included the native habitat of each species and two intermediate elevations, and measured eight leaf morphology and physiology traits on established seedlings. We detected large significant changes in genetic variance across elevation and between species. Elevational changes in genetic variance within species were greater than differences between the two species. Furthermore, changes in genetic variation across elevation aligned with phenotypic plasticity. These results suggest that to understand adaptation to novel environments we need to consider how genetic variance changes in response to environmental variation, and the effect of such changes on genetic constraints to adaptation and the evolution of plasticity.


Evolution ◽  
2020 ◽  
Vol 74 (8) ◽  
pp. 1772-1787
Author(s):  
Neda N. Moghadam ◽  
Karendeep Sidhu ◽  
Pauliina A. M. Summanen ◽  
Tarmo Ketola ◽  
Ilkka Kronholm

Author(s):  
Hanna Scheuffele ◽  
Francesc Rubio-Gracia ◽  
Timothy D. Clark

Aerobic metabolic scope is a popular metric to estimate the capacity for temperature-dependent performance in aquatic animals. Despite this popularity, little is known of the role of temperature acclimation and variability in shaping the breadth and amplitude of the thermal performance curve for aerobic scope. If daily thermal experience can modify the characteristics of the thermal performance curve, interpretations of aerobic scope data from the literature may be misguided. Here, tropical barramundi (Lates calcarifer) were acclimated for ∼4 months to cold (23℃), optimal (29℃) or warm (35℃) conditions, or to a daily temperature cycle between 23 and 35℃ (with a mean of 29℃). Measurements of aerobic scope were conducted every 3-4 weeks at three temperatures (23℃, 29℃ and 35℃), and growth rates were monitored. Acclimation to constant temperatures caused some changes in aerobic scope at the three measurement temperatures via adjustments in standard and maximal metabolic rates, and growth rates were lower in the 23℃-acclimated group compared with all other groups. The metabolic parameters and growth rates of the thermally variable group remained similar to those of the 29℃-acclimated group. Thus, acclimation to a variable temperature regime did not broaden the thermal performance curve for aerobic scope. We propose that aerobic scope thermal performance curves are more plastic in amplitude rather than breadth, and that the metabolic phenotype of at least some fish may be more dependent on the mean daily temperature rather than on the daily temperature range.


Author(s):  
Bruce Walsh ◽  
Michael Lynch

One of the major unresolved issues in quantitative genetics is what accounts for the amount of standing genetic variation in traits. A wide range of models, all reviewed in this chapter, have been proposed, but none fit the data, either giving too much variation or too little apparent stabilizing selection.


2009 ◽  
Vol 36 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Neus Martínez-Abadías ◽  
Carolina Paschetta ◽  
Soledad de Azevedo ◽  
Mireia Esparza ◽  
Rolando González-José

Sign in / Sign up

Export Citation Format

Share Document