scholarly journals Transcriptome-wide analysis of expressed resistance gene analogs (RGAs) in mango

2020 ◽  
Author(s):  
Darlon V. Lantican ◽  
Cris Q. Cortaga ◽  
Anand Noel C. Manohar ◽  
Fe M. dela Cueva ◽  
Maria Luz J. Sison

AbstractMango is an economically important fruit crop largely cultivated in the (sub)tropics and thus, is constantly challenged by a myriad of insect pests and diseases. Here, we identified and characterized the resistance gene analogs (RGAs) of mango from de novo assembly of transcriptomic sequences. A core RGA database of mango with 747 protein models was established and classified based on conserved domains and motifs: 53 nucleotide binding site proteins (NBS); 27 nucleotide binding site-leucine rich repeat proteins (NBS-LRR); 17 coiled-coil NBS-LRR (CNL); 2 toll/interleukin-1 receptor NBS-LRR (TNL); 29 coiled-coil NBS (CN); 4 toll/interleukin-1 receptor NBS (TN); 17 toll/interleukin-1 receptor with unknown domain (TX); 158 receptor-like proteins (RLP); 362 receptor-like kinases (RLK); 72 transmembrane coiled-coil domain protein (TM-CC), and 6 NBS-encoding proteins with other domains. The various molecular functions, biological processes, and cellular localizations of these RGAs were functionally well-annotated through gene ontology (GO) analysis, and their expression profiles across different mango varieties were also determined. Phylogenetic analysis broadly clustered the core RGAs into 6 major clades based on their domain classification, while TM-CC proteins formed subclades all across the tree. The phylogenetic results suggest highly divergent functions of the RGAs which also provide insights into the mango-pest co-evolutionary arms race. From the mango RGA transcripts, 134 unique EST-SSR loci were identified, and primers were designed targeting these potential markers. To date, this is the most comprehensive analysis of mango RGAs which offer a trove of markers for utilization in resistance breeding of mango.

Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 782-788 ◽  
Author(s):  
W Spielmeyer ◽  
M Robertson ◽  
N Collins ◽  
D Leister ◽  
P Schulze-Lefert ◽  
...  

In this study, resistance gene analogs (RGAs) which were isolated from monocot crop species (wheat, barley, maize and rice) and contained conserved sequence motifs found within the nucleotide binding site - leucine rich repeat (NBS-LRR) class of resistance genes, were used to assess their distribution in the wheat genome. The RGAs showed 30-70% amino acid identity to a previously isolated monocot NBS-LRR sequence from the Cre3 locus for cereal cyst nematode (CCN) resistance in wheat. We used the RGAs as probes to identify and map loci in wheat using recombinant inbred lines of an international Triticeae mapping family. RGA loci mapped across all seven homoeologous chromosome groups of wheat. This study demonstrated that the RGA mapping approach provides potential entry points toward identifying resistance gene candidates in wheat.Key words: wheat, disease resistance genes, nucleotide binding site, leucine rich repeat, resistance gene analogs.


Genome ◽  
2006 ◽  
Vol 49 (2) ◽  
pp. 150-158 ◽  
Author(s):  
Yu Chen ◽  
Likun Long ◽  
Xiuyun Lin ◽  
Wanli Guo ◽  
Bao Liu

Eight resistance-gene analogs (RGAs) were isolated from wild rice, Zizania latifolia Griseb., by degenerate primers designed according to conserved motifs at or around the nucleotide-binding site (NBS) of known NBS-containing plant resistance genes. The 8 RGAs were classified into 6 distinct groups based on their deduced amino acid sequence similarity of 60% or greater. Gel-blot hybridization of each of the RGAs to 4 rice – Z. latifolia intro gression lines indicated an array of changes at either introgressed Zizania RGAs or, more likely, their rice homologs. The changes included dramatic increase in copy number, modification at the primary DNA sequence, and alteration in DNA methylation patterns.Key words: resistance gene analogs (RGAs), Zizania, introgression, nucleotide-binding site (NBS), leucine-rich repeat (LRR), genetic and epigenetic changes.


Plant Biology ◽  
2008 ◽  
Vol 10 (3) ◽  
pp. 310-322 ◽  
Author(s):  
Q. Zhang ◽  
Z.-Y. Zhang ◽  
S.-Z. Lin ◽  
H.-Q. Zheng ◽  
Y.-Z. Lin ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


2000 ◽  
Vol 12 (12) ◽  
pp. 2541-2554 ◽  
Author(s):  
Yi Tao ◽  
Fenghua Yuan ◽  
R. Todd Leister ◽  
Frederick M. Ausubel ◽  
Fumiaki Katagiri

Sign in / Sign up

Export Citation Format

Share Document