scholarly journals PCNA activates the MutLγ endonuclease to promote meiotic crossing over

Author(s):  
Dhananjaya S. Kulkarni ◽  
Shannon Owens ◽  
Masayoshi Honda ◽  
Masaru Ito ◽  
Ye Yang ◽  
...  

AbstractDuring meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defects in crossing over cause infertility, miscarriage and congenital disease. Accordingly, each pair of chromosomes attains at least one crossover through processes that designate and then implement crossing over with high efficiency2. At the DNA level, crossing over is implemented through the formation and biased resolution of double-Holliday Junction intermediates3–5. A central tenet of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands6. Although the endonuclease activity of the MutLγ complex has been implicated in crossover-biased resolution7–12, the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp, PCNA, is important for crossover-biased resolution. In vitro assays with human enzymes show that hPCNA and its loader hRFC are sufficient to activate the hMutLγ endonuclease under physiological conditions. In this context, the hMutLγ endonuclease is further stimulated by a co-dependent activity of the pro-crossover factors hEXO1 and hMutSγ, the latter of which binds Holliday junctions13. hMutLγ also specifically binds a variety of branched DNAs, including Holliday junctions, but canonical resolvase activity is not observed implying that the endonuclease incises adjacent to junction branch points to effect resolution. In vivo, we show that budding yeast RFC facilitates MutLγ-dependent crossing over. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover-resolution and DNA mismatch repair14–16 and evoke a novel model for crossover-specific dHJ resolution during meiosis.

2020 ◽  
Vol 477 (16) ◽  
pp. 2935-2947
Author(s):  
Ryan J. Buckley ◽  
Kevin Kramm ◽  
Christopher D. O. Cooper ◽  
Dina Grohmann ◽  
Edward L. Bolt

The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the ‘parental’ DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Shun-Hsiao Lee ◽  
Lissa Nicola Princz ◽  
Maren Felizitas Klügel ◽  
Bianca Habermann ◽  
Boris Pfander ◽  
...  

Holliday junctions (HJs) are key DNA intermediates in homologous recombination. They link homologous DNA strands and have to be faithfully removed for proper DNA segregation and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1 complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases. However, unlike other members of the superfamily, GEN1 contains a chromodomain as an additional DNA interaction site. Chromodomains are known for their chromatin-targeting function in chromatin remodelers and histone(de)acetylases but they have not previously been found in nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers GEN1’s catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA repair and maintenance.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jie Zheng ◽  
Na Tian ◽  
Fei Liu ◽  
Yidian Zhang ◽  
Jingfen Su ◽  
...  

AbstractIntraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders, collectively termed as tauopathies, including the most common Alzheimer’s disease (AD). Therefore, selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies. Here, we designed and synthesized a novel DEPhosphorylation TArgeting Chimera (DEPTAC) to specifically facilitate the binding of tau to Bα-subunit-containing protein phosphatase 2A (PP2A-Bα), the most active tau phosphatase in the brain. The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo. Further studies revealed that DEPTAC significantly improved microtubule assembly, neurite plasticity, and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368. Our data provide a strategy for selective removal of the hyperphosphorylated tau, which sheds new light for the targeted therapy of AD and related-tauopathies.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1357
Author(s):  
Rubén Torres ◽  
Carolina Gándara ◽  
Begoña Carrasco ◽  
Ignacio Baquedano ◽  
Silvia Ayora ◽  
...  

The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c‑di-AMP) second messenger and such synthesis is suppressed upon replication perturbation. In vitro, c-di-AMP synthesis is suppressed when DisA binds DNA structures that mimic stalled or reversed forks (gapped forks or Holliday junctions [HJ]). RecG, which does not form a stable complex with DisA, unwinds branched intermediates, and in the presence of a limiting ATP concentration and HJ DNA, it blocks DisA-mediated c-di-AMP synthesis. DisA pre-bound to a stalled or reversed fork limits RecG-mediated ATP hydrolysis and DNA unwinding, but not if RecG is pre-bound to stalled or reversed forks. We propose that RecG-mediated fork remodeling is a genuine in vivo activity, and that DisA, as a molecular switch, limits RecG-mediated fork reversal and fork restoration. DisA and RecG might provide more time to process perturbed forks, avoiding genome breakage.


2000 ◽  
Vol 20 (21) ◽  
pp. 8059-8068 ◽  
Author(s):  
Chonghui Cheng ◽  
Stewart Shuman

ABSTRACT Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5′ resected end of a duplex DNA containing a 3′ tail. The joining reaction occurs with high efficiency when the sequence of the 3′ tail is complementary to that of the scissile strand immediately 5′ of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3′ flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.


2015 ◽  
Vol 61 (1) ◽  
pp. 19-29 ◽  
Author(s):  
A.O. Shpakov ◽  
E.A. Shpakova

The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism.


2020 ◽  
Author(s):  
Lian Deng ◽  
Xiongjie Zhu ◽  
Zhongjian Yu ◽  
Ying Li ◽  
Lingyu Qin ◽  
...  

Abstract Although single-drug chemotherapy is still an effective treatment for esophageal cancer, its long-term application is limited by severe side effects. Nanomedicines have increasingly attracted attention because of their good biological safety, targeting and high-efficiency loading of multiple drugs. Herein, we have developed a pH-responsive nanocarrier that has high affinity for the transferrin receptor, which is overexpressed by tumor cells. The system is capable of simultaneous delivery of the chemotherapy drug, docetaxel, and the Chinese Medicine, curcumin, for treatment of esophageal cancer. This novel T7-modified targeting nanosystem releases loaded drugs when exposed to the acidic microenvironment of the tumor, and exerts a synergistic anti-tumor effect, and T7-NP-DC with docetaxel and curcumin loading of 10% and 6.1%, respectively. In vitro and in vivo studies showed that improved anti-tumor efficacy could be obtained by loading docetaxel and curcumin into the T7-modified nanocarrierwithout obvious toxicity or side effects, compared to drug without nanocarrier. Furthermore, the nanocarriers conjugated with T7 short peptides were more readily taken up by esophageal cancer cells compared with normal cells.Together, our findings indicate that the materials can safely exert synergistic anti-tumor effects and provide an excellent therapeutic platform for combination therapy of esophageal cancer.


1969 ◽  
Vol 22 (9) ◽  
pp. 446-448 ◽  
Author(s):  
HIDEO SUZUKI ◽  
KAZUO NAGAI ◽  
HIROSHI YAMAKI ◽  
NOBUO TANAKA ◽  
HAMAO UMEZAWA

Sign in / Sign up

Export Citation Format

Share Document