scholarly journals Distinct Neuronal Populations Contribute to Trace Conditioning and Extinction Learning in the Hippocampal CA1

2020 ◽  
Author(s):  
Rebecca A. Mount ◽  
Kyle R. Hansen ◽  
Sudiksha Sridhar ◽  
Ali I. Mohammed ◽  
Moona Abdulkerim ◽  
...  

AbstractTrace conditioning and extinction learning depend on the hippocampus, but it remains unclear how ongoing neural activities in the hippocampus are modulated during different learning processes. To explore this question, we performed calcium imaging in a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Using trial-averaged calcium fluorescence analysis, we found direct evidence that in real time, as learning emerges, distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs, and found that CA1 network connectivity is different between conditioning and extinction and between correct versus incorrect behavioral responses during trace conditioned learning. However, the overall connectivity density remains constant across these behavioral conditions. Together, our results demonstrate that distinct populations of CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rebecca A Mount ◽  
Sudiksha Sridhar ◽  
Kyle R Hansen ◽  
Ali I Mohammed ◽  
Moona E Abdulkerim ◽  
...  

Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rebecca A Mount ◽  
Sudiksha Sridhar ◽  
Kyle R Hansen ◽  
Ali I Mohammed ◽  
Moona E Abdulkerim ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Shogo Takamiya ◽  
Kazuki Shiotani ◽  
Tomoya Ohnuki ◽  
Yuma Osako ◽  
Yuta Tanisumi ◽  
...  

The hippocampus is crucial for forming associations between environmental stimuli. However, it is unclear how neural activities of hippocampal neurons dynamically change during the learning process. To address this question, we developed an associative memory task for rats with auditory stimuli. In this task, the rats were required to associate tone pitches (high and low) and ports (right and left) to obtain a reward. We recorded the firing activity of neurons in rats hippocampal CA1 during the learning process of the task. As a result, many hippocampal CA1 neurons increased their firing rates when the rats received a reward after choosing either the left or right port. We referred to these cells as “reward-direction cells.” Furthermore, the proportion of the reward-direction cells increased in the middle-stage of learning but decreased after the completion of learning. This result suggests that the activity of reward-direction cells might serve as “positive feedback” signal that facilitates the formation of associations between tone pitches and port choice.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S300-S300
Author(s):  
Thomas J Sick ◽  
Ami P Raval ◽  
Isabel Saul ◽  
Kunjan R Dave ◽  
Raul Busto ◽  
...  

2021 ◽  
Vol 7 (11) ◽  
pp. eabf1913
Author(s):  
Takuma Kitanishi ◽  
Ryoko Umaba ◽  
Kenji Mizuseki

The dorsal hippocampus conveys various information associated with spatial navigation; however, how the information is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled the firing of projection neurons in a target region–specific manner. In conclusion, the dorsal subiculum robustly routes diverse navigation-associated information to downstream areas.


Sign in / Sign up

Export Citation Format

Share Document