scholarly journals Behavioral, physiological, and neural signatures of surprise during naturalistic sports viewing

Author(s):  
James W. Antony ◽  
Thomas H. Hartshorne ◽  
Ken Pomeroy ◽  
Todd M. Gureckis ◽  
Uri Hasson ◽  
...  

SummarySurprise signals a discrepancy between past and current beliefs. It is theorized to be linked to affective experiences, the creation of particularly resilient memories, and segmentation of the flow of experience into discrete perceived events. However, the ability to precisely measure naturalistic surprise has remained elusive. We used advanced basketball analytics to derive a quantitative measure of surprise and characterized its behavioral, physiological, and neural correlates in human subjects observing basketball games. We found that surprise was associated with segmentation of ongoing experiences, as reflected by subjectively perceived event boundaries and shifts in neocortical patterns underlying belief states. Interestingly, these effects differed by whether surprising moments contradicted or bolstered current predominant beliefs. Surprise also positively correlated with pupil dilation, activation in subcortical regions associated with dopamine, game enjoyment, and long-term memory. These investigations support key predictions from event segmentation theory and extend theoretical conceptualizations of surprise to real-world contexts.

1996 ◽  
Vol 351 (1346) ◽  
pp. 1455-1462 ◽  

The lateral frontal cortex is involved in various aspects of executive processing within short- and long-term memory. It is argued that the different parts of the lateral frontal cortex make distinct contributions to memory that differ in terms of the level of executive processing that is carried out in interaction with posterior cortical systems. According to this hypothesis, the mid-dorsolateral frontal cortex (areas 46 and 9) is a specialized system for the monitoring and manipulation of information within working memory, whereas the mid-ventrolateral frontal cortex (areas 47/12 and 45) is involved in the active retrieval of information from the posterior cortical association areas. Data are presented which support this two-level hypothesis that posits two distinct levels of interaction of the lateral frontal cortex with posterior cortical association areas. Functional activation studies with normal human subjects have demonstrated specific activity within the mid-dorsolateral region of the frontal cortex during the performance of tasks requiring monitoring of self-generated and externally generated sequences of responses. In the monkey, lesions restricted to this region of the frontal cortex yield a severe impairment in performance of the above tasks, this impairment appearing against a background of normal performance on several basic mnemonic tasks. By contrast, a more severe impairment follows damage to the mid-ventrolateral frontal region and functional activation studies have demonstrated specific changes in activity in this region in relation to the active retrieval of information from memory.


2018 ◽  
Author(s):  
Sirawaj Itthipuripat ◽  
Geoffrey F Woodman

SummaryHow do we know what we are looking for in familiar scenes and surroundings? Here we tested a novel hypothesis derived from theories of human memory that working memory (WM) buffers mnemonic contents retrieved from long-term memory (LTM) to control attention. To test this hypothesis, we measured the electrical fields recorded noninvasively from human subjects’ as they searched for specific sets of objects in learned contexts. We found that the subjects’ WM-indexing brain activity tracked the number of real-world objects people learned to search for in each context. Moreover, the level of this WM activity predicted the inter-subject variability in behavioral performance. Together, our results demonstrate that familiar contexts can trigger the transfer of information from LTM to WM to provide top-down attentional control.


2019 ◽  
Author(s):  
Jungsun Yoo ◽  
Seokyoung Min ◽  
Seung-Koo Lee ◽  
Sanghoon Han

AbstractWhen a stimulus is associated with an external reward, its chance of being consolidated into long-term memory is boosted via dopaminergic facilitation of long-term potentiation in the hippocampus. Given that higher temporal distance (TD) has been found to discount the subjective value of a reward, we hypothesized that memory performance associated with a more immediate reward will result in better memory performance. We tested this hypothesis by measuring both behavioral memory performance and brain activation using functional magnetic resonance imaging (fMRI) during memory encoding and retrieval tasks. Contrary to our hypothesis, both behavioral and fMRI results suggest that the TD of rewards might enhance the chance of the associated stimulus being remembered. The fMRI data demonstrate that the lateral prefrontal cortex, which shows encoding-related activation proportional to the TD, is reactivated when searching for regions that show activation proportional to the TD during retrieval. This is not surprising given that this region is not only activated to discriminate between future vs. immediate rewards, it is also a part of the retrieval-success network. These results provide support for the conclusion that the encoding-retrieval overlap provoked as the rewards are more delayed lead to better memory performance of the items associated with the rewards.


NeuroImage ◽  
2012 ◽  
Vol 63 (2) ◽  
pp. 989-997 ◽  
Author(s):  
Heiko C. Bergmann ◽  
Mark Rijpkema ◽  
Guillén Fernández ◽  
Roy P.C. Kessels

2015 ◽  
Vol 114 (2) ◽  
pp. 969-977 ◽  
Author(s):  
David M. Huberdeau ◽  
Adrian M. Haith ◽  
John W. Krakauer

The term savings refers to faster motor adaptation upon reexposure to a previously experienced perturbation, a phenomenon thought to reflect the existence of a long-term motor memory. It is commonly assumed that sustained practice during the first perturbation exposure is necessary to create this memory. Here we sought to test this assumption by determining the minimum amount of experience necessary during initial adaptation to a visuomotor rotation to bring about savings the following day. Four groups of human subjects experienced 2, 5, 10, or 40 trials of a counterclockwise 30° cursor rotation during reaching movements on one day and were retested the following day to assay for savings. Groups that experienced five trials or more of adaptation on day 1 showed clear savings on day 2. Subjects in all groups learned significantly more from the first rotation trial on day 2 than on day 1, but this learning rate advantage was maintained only in groups that had reached asymptote during the initial exposure. Additional experiments revealed that savings occurred when the magnitude, but not the direction, of the rotation differed across exposures, and when a 5-min break, rather than an overnight one, separated the first and second exposure. The overall pattern of savings we observe across conditions can be explained as rapid retrieval of the state of learning attained during the first exposure rather than as modulation of sensitivity to error. We conclude that a long-term memory for compensating for a perturbation can be rapidly acquired and rapidly retrieved.


NeuroImage ◽  
2012 ◽  
Vol 59 (2) ◽  
pp. 1719-1726 ◽  
Author(s):  
John D. Ragland ◽  
Robert S. Blumenfeld ◽  
Ian S. Ramsay ◽  
Andrew Yonelinas ◽  
Jong Yoon ◽  
...  

1996 ◽  
Vol 75 (4) ◽  
pp. 1730-1737 ◽  
Author(s):  
E. Bonda ◽  
M. Petrides ◽  
A. Evans

1. The aim of this study was to investigate the neural systems involved in the memory processing of experiences through touch. 2. Regional cerebral blood flow was measured with positron emission tomography by means of the water bolus H2(15)O methodology in human subjects as they performed tasks involving different levels of tactual memory. In one of the experimental tasks, the subjects had to palpate nonsense shapes to match each one to a previously learned set, thus requiring constant reference to long-term memory. The other experimental task involved judgements of the recent recurrence of shapes during the scanning period. A set of three control tasks was used to control for the type of exploratory movements and sensory processing inherent in the two experimental tasks. 3. Comparisons of the distribution of activity between the experimental and the control tasks were carried out by means of the subtraction method. In relation to the control conditions, the two experimental tasks requiring memory resulted in significant changes within the posteroventral insula and the central opercular region. In addition, the task requiring recall from long-term memory yielded changes in the perirhinal cortex. 4. The above findings demonstrated that a ventrally directed parietoinsular pathway, leading to the posteroventral insula and the perirhinal cortex, constitutes a system by which long-lasting representations of tactual experiences are formed. It is proposed that the posteroventral insula is involved in tactual feature analysis, by analogy with the similar role of the inferotemporal cortex in vision, whereas the perirhinal cortex is further involved in the integration of these features into long-lasting representations of somatosensory experiences.


Sign in / Sign up

Export Citation Format

Share Document