scholarly journals Decoding Predictions and Violations of Object Position and Category in Time-resolved EEG

2020 ◽  
Author(s):  
Christopher J. Whyte ◽  
Amanda K. Robinson ◽  
Tijl Grootswagers ◽  
Hinze Hogendoorn ◽  
Thomas A. Carlson

AbstractClassic models of predictive coding propose that sensory systems use information retained from prior experience to predict current sensory input. Any mismatch between predicted and current input (prediction error) is then fed forward up the hierarchy leading to a revision of the prediction. We tested this hypothesis in the domain of object vision using a combination of multivariate pattern analysis and time-resolved electroencephalography. We presented participants with sequences of images that stepped around fixation in a predictable order. On the majority of presentations, the images conformed to a consistent pattern of position order and object category order, however, on a subset of presentations the last image in the sequence violated the established pattern by either violating the predicted category or position of the object. Contrary to classic predictive coding when decoding position and category we found no differences in decoding accuracy between predictable and violation conditions. However, consistent with recent extensions of predictive coding, exploratory analyses showed that a greater proportion of predictions was made to the forthcoming position in the sequence than to either the previous position or the position behind the previous position suggesting that the visual system actively anticipates future input as opposed to just inferring current input.

NeuroImage ◽  
2016 ◽  
Vol 132 ◽  
pp. 32-42 ◽  
Author(s):  
Anna Gardumi ◽  
Dimo Ivanov ◽  
Lars Hausfeld ◽  
Giancarlo Valente ◽  
Elia Formisano ◽  
...  

2021 ◽  
Author(s):  
Kira Ashton ◽  
Benjamin Zinszer ◽  
Radoslaw Cichy ◽  
Charles Nelson ◽  
Richard Aslin ◽  
...  

Time-resolved multivariate pattern analysis (MVPA), a popular technique for analyzing magneto- and electro-encephalography (M/EEG) neuroimaging data, quantifies the extent and time-course by which neural representations support the discrimination of relevant stimuli dimensions. As EEG is widely used for infant neuroimaging, time-resolved MVPA of infant EEG data is a particularly promising tool for infant cognitive neuroscience. MVPA methods have recently been applied to common infant imaging methods such as EEG and fNIRS. In this tutorial, we provide and describe code to implement time-resolved, within-subject MVPA with infant EEG data. A pipeline for time-resolved MVPA based on linear SVM classification is described and implemented with accompanying code in both Matlab and Python. Results from a test dataset indicated that in both infants and adults this method reliably produced above chance classification accuracy. Extensions of the core pipeline are presented including both geometric- and accuracy-based representational similarity analysis, implemented in Python. Common choices of implementation are presented and discussed. As the amount of artifact-free EEG data contributed by each participant is lower in studies of infants than in studies of children and adults, we also explore and discuss the impact of varying participant-level inclusion thresholds on resulting MVPA findings in these datasets.


Children ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 186
Author(s):  
Valeria Calcaterra ◽  
Giacomo Biganzoli ◽  
Gloria Pelizzo ◽  
Hellas Cena ◽  
Alessandra Rizzuto ◽  
...  

Background: The prevalence of pediatric metabolic syndrome is usually closely linked to overweight and obesity; however, this condition has also been described in children with disabilities. We performed a multivariate pattern analysis of metabolic profiles in neurologically impaired children and adolescents in order to reveal patterns and crucial biomarkers among highly interrelated variables. Patients and methods: We retrospectively reviewed 44 cases of patients (25M/19F, mean age 12.9 ± 8.0) with severe disabilities. Clinical and anthropometric parameters, body composition, blood pressure, and metabolic and endocrinological assessment (fasting blood glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, gamma-glutamyl transpeptidase) were recorded in all patients. As a control group, we evaluated 120 healthy children and adolescents (61M/59F, mean age 12.9 ± 2.7). Results: In the univariate analysis, the children-with-disabilities group showed a more dispersed distribution, thus with higher variability of the features related to glucose metabolism and insulin resistance (IR) compared to the healthy controls. The principal component (PC1), which emerged from the PC analysis conducted on the merged dataset and characterized by these variables, was crucial in describing the differences between the children-with-disabilities group and controls. Conclusion: Children and adolescents with disabilities displayed a different metabolic profile compared to controls. Metabolic syndrome (MetS), particularly glucose metabolism and IR, is a crucial point to consider in the treatment and care of this fragile pediatric population. Early detection of the interrelated variables and intervention on these modifiable risk factors for metabolic disturbances play a central role in pediatric health and life expectancy in patients with a severe disability.


Sign in / Sign up

Export Citation Format

Share Document