scholarly journals Rationalizing PROTAC-mediated ternary complex formation using Rosetta

Author(s):  
Nan Bai ◽  
Palani Kirubakaran ◽  
John Karanicolas

AbstractPROTACs are molecules that combine a target-binding warhead with an E3 ligase-recruiting moiety; by drawing the target protein into a ternary complex with the E3 ligase, PROTACs induce target protein degradation. While PROTACs hold exciting potential as chemical probes and as therapeutic agents, development of a PROTAC typically requires synthesis of numerous analogs to thoroughly explore variations on the chemical linker; without extensive trial and error, it is unclear how to link the two protein-recruiting moieties to promote formation of a productive ternary complex. Here, we describe a structure-based computational method for evaluating suitability of a given linker for ternary complex formation. Our method uses Rosetta to dock the protein components, then builds the PROTAC from its component fragments into each binding mode; complete models of the ternary complex are then refined. We apply this approach to retrospectively evaluate multiple PROTACs from the literature, spanning diverse target proteins. We find that modeling ternary complex formation is sufficient to explain both activity and selectivity reported for these PROTACs, implying that other cellular factors are not key determinants of activity in these cases. We further find that interpreting PROTAC activity is best approached using an ensemble of structures of the ternary complex rather than a single static conformation, and that members of a structurally-conserved protein family can be recruited by the same PROTAC through vastly different binding modes. To encourage adoption of these methods and promote further analyses, we disseminate both the computational methods and the models of ternary complexes.Significance StatementRecent years have brought a flood of interest in developing compounds that selectively degrade protein targets in cells, as exemplified by PROTACs. Fully realizing the promise of PROTACs to transform chemical biology by delivering degraders of diverse and undruggable protein targets has been impeded, however, by the fact that designing a suitable chemical linker between the functional moieties requires extensive trial and error. Here, we describe a structure-based computational method to predict PROTAC activity. We envision that this approach will allow design and optimization of PROTACs for efficient target degradation, selection of E3 ligases best suited for pairing with a given target protein, and understanding the basis by which PROTACs can exhibit different target selectivity than their component warheads.

2021 ◽  
Author(s):  
Charu Chaudhry

Proteolysis targeting chimeras (PROTACs), heterobifunctional protein degraders, have emerged as an exciting and transformative technology in chemical biology and drug discovery to degrade disease-causing proteins through co-opting of the ubiquitin-proteosome system (UPS). Here we develop a mechanistic mathematical model for the use of irreversible covalent chemistry in targeted protein degradation (TPD), either to the target protein of interest (POI) or E3 ligase ligand, considering the thermodynamic and kinetic factors governing ternary complex formation, ubiquitination, and degradation through the UPS. We highlight key advantages of covalency to POI and E3 ligase, and the underlying theoretical basis in the TPD reaction framework. We further identify regimes where covalency can serve to overcome weak binary binding affinities and improve kinetics of ternary complex formation and degradation. Our results highlight the enhanced catalytic efficiency of covalent E3 PROTACs and thus their potential to improve the degradation of fast turnover targets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Jean Paul Kovalik ◽  
Manda Orgeron ◽  
Desiree Wanders ◽  
...  

AbstractThe initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4’s prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.


Author(s):  
Yoselin Jara ◽  
Mary Lorena Araujo ◽  
Waleska Madden ◽  
Vito Lubes ◽  
Lino Hernández

2013 ◽  
Vol 77 (8) ◽  
pp. 1715-1721 ◽  
Author(s):  
Mayumi OKUMURA ◽  
Angela M. KATSUYAMA ◽  
Hideki SHIBATA ◽  
Masatoshi MAKI

1999 ◽  
Vol 274 (18) ◽  
pp. 12765-12773 ◽  
Author(s):  
Liliane A. Dickinson ◽  
John W. Trauger ◽  
Eldon E. Baird ◽  
Peter B. Dervan ◽  
Barbara J. Graves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document