scholarly journals Synchronized oscillations, metachronal waves, and jammed clusters in sterically interacting active filament arrays

2020 ◽  
Author(s):  
Raghunath Chelakkot ◽  
Michael F. Hagan ◽  
L. Mahadevan ◽  
Arvind Gopinath

Autonomous active, elastic filaments that interact with each other to achieve cooperation and synchrony underlie many critical functions in biology. A striking example is ciliary arrays in the mammalian respiratory tract; here individual filaments communicate through direct interactions and through the surrounding fluid to generate metachronal traveling waves crucial for mucociliary clearance. The mechanisms underlying this collective response and the essential ingredients for stable synchronization remain a mystery. In this article, we describe Brownian dynamics simulations of multi-filament arrays, demonstrating that short-range steric inter-filament interactions and surface-roughness are sufficient to generate a rich variety of collective spatiotemporal oscillatory, traveling and static patterns. Starting from results for the collective dynamics of two- and three-filament systems, we identify parameter ranges in which inter-filament interactions lead to synchronized oscillations. We then study how these results generalize to large one-dimensional arrays of many interacting filaments. The phase space characterizing the multi-filament array dynamics and deformations exhibits rich behaviors, including oscillations and traveling metachronal waves, depending on the interplay between geometric spacing between filaments, activity, and elasticity of the filaments. Interestingly, the existence of metachronal waves is nonmonotonic with respect to the inter-filament spacing. We also find that the degree of filament surface roughness significantly affects the dynamics — roughness on scales comparable to the filament thickness generates a locking-mechanism that transforms traveling wave patterns into statically stuck and jammed configurations. Our simulations suggest that short-ranged steric inter-filament interactions are sufficient and perhaps even critical for the development, stability and regulation of collective patterns.

2019 ◽  
Author(s):  
Yaouen Fily ◽  
Priya Subramanian ◽  
Tobias M. Schneider ◽  
Raghunath Chelakkot ◽  
Arvind Gopinath

Biological filaments driven by molecular motors tend to experience tangential propulsive forces also known as active follower forces. When such a filament encounters an obstacle, it deforms, which reorients its follower forces and alters its entire motion. If the filament pushes a cargo, the friction on the cargo can be enough to deform the filament, thus affecting the transport properties of the cargo. Motivated by cytoskeletal filament motility assays, we study the dynamic buckling instabilities of a two-dimensional slender elastic filament driven through a dissipative medium by tangential propulsive forces in the presence of obstacles or cargo. We observe two distinct instabilities. When the filament’s head is pinned or experiences significant translational but little rotational drag from its cargo, it buckles into a steadily rotating coiled state. When it is clamped or experiences both significant translational and rotational drag from its cargo, it buckles into a periodically beating, overall translating state. Using minimal analytically tractable models, linear stability theory, and fully non-linear computations, we study the onset of each buckling instability, characterize each buckled state, and map out the phase diagram of the system. Finally, we use particle-based Brownian dynamics simulations to show our main results are robust to moderate noise and steric repulsion. Overall, our results provide a unified framework to understand the dynamics of tangentially propelled filaments and filament-cargo assemblies.


Author(s):  
Konstantinos Manikas ◽  
Markus Hütter ◽  
Patrick D. Anderson

AbstractThe effect of time-dependent external fields on the structures formed by particles with induced dipoles dispersed in a viscous fluid is investigated by means of Brownian Dynamics simulations. The physical effects accounted for are thermal fluctuations, dipole-dipole and excluded volume interactions. The emerging structures are characterised in terms of particle clusters (orientation, size, anisotropy and percolation) and network structure. The strength of the external field is increased in one direction and then kept constant for a certain amount of time, with the structure formation being influenced by the slope of the field-strength increase. This effect can be partially rationalized by inhomogeneous time re-scaling with respect to the field strength, however, the presence of thermal fluctuations makes the scaling at low field strength inappropriate. After the re-scaling, one can observe that the lower the slope of the field increase, the more network-like and the thicker the structure is. In the second part of the study the field is also rotated instantaneously by a certain angle, and the effect of this transition on the structure is studied. For small rotation angles ($$\theta \le 20^{{\circ }}$$ θ ≤ 20 ∘ ) the clusters rotate but stay largely intact, while for large rotation angles ($$\theta \ge 80^{{\circ }}$$ θ ≥ 80 ∘ ) the structure disintegrates and then reforms, due to the nature of the interactions (parallel dipoles with perpendicular inter-particle vector repel each other). For intermediate angles ($$20<\theta <80^{{\circ }}$$ 20 < θ < 80 ∘ ), it seems that, during rotation, the structure is altered towards a more network-like state, as a result of cluster fusion (larger clusters). The details provided in this paper concern an electric field, however, all results can be projected into the case of a magnetic field and paramagnetic particles.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Philip James Camp ◽  
John Philip

We probe the influence of particle size polydispersity on field-induced structures and structural transitions in magnetic fluids (ferrofluids) using phase contrast optical microscopy, light scattering and Brownian dynamics simulations. Three...


Author(s):  
Oliver Henrich ◽  
Fabian Weysser ◽  
Michael E. Cates ◽  
Matthias Fuchs

Brownian dynamics simulations of bidisperse hard discs moving in two dimensions in a given steady and homogeneous shear flow are presented close to and above the glass transition density. The stationary structure functions and stresses of shear-melted glass are compared quantitatively to parameter-free numerical calculations of monodisperse hard discs using mode coupling theory within the integration through transients framework. Theory qualitatively explains the properties of the yielding glass but quantitatively overestimates the shear-driven stresses and structural anisotropies.


Sign in / Sign up

Export Citation Format

Share Document