scholarly journals Genomic prediction in the wild: A case study in Soay sheep

2020 ◽  
Author(s):  
B Ashraf ◽  
DC Hunter ◽  
C Bérénos ◽  
PA Ellis ◽  
SE Johnston ◽  
...  

AbstractGenomic prediction, the technique whereby an individual’s genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep. The population has been the focus of a >30 year evolutionary ecology study and there is already considerable understanding of the genetic architecture of the focal Mendelian and quantitative traits. We show that the accuracy of genomic prediction is high for all traits, but especially those with loci of large effect segregating. Five different methods are compared, and the two methods that can accommodate zero-effect and large-effect loci in the same model tend to perform best. If the accuracy of genomic prediction is similar in other wild populations, then there is a real opportunity for pedigree-free molecular quantitative genetics research to be enabled in many more wild populations; currently the literature is dominated by studies that have required decades of field data collection to generate sufficiently deep pedigrees. Finally, some of the potential applications of genomic prediction in wild populations are discussed.

2021 ◽  
Author(s):  
B Ashraf ◽  
DC Hunter ◽  
C Bérénos ◽  
PA Ellis ◽  
SE Johnston ◽  
...  

2013 ◽  
Vol 59 (4) ◽  
pp. 485-505 ◽  
Author(s):  
Jon E. Brommer

Abstract Individual-based studies allow quantification of phenotypic plasticity in behavioural, life-history and other labile traits. The study of phenotypic plasticity in the wild can shed new light on the ultimate objectives (1) whether plasticity itself can evolve or is constrained by its genetic architecture, and (2) whether plasticity is associated to other traits, including fitness (selection). I describe the main statistical approach for how repeated records of individuals and a description of the environment (E) allow quantification of variation in plasticity across individuals (IxE) and genotypes (GxE) in wild populations. Based on a literature review of life-history and behavioural studies on plasticity in the wild, I discuss the present state of the two objectives listed above. Few studies have quantified GxE of labile traits in wild populations, and it is likely that power to detect statistically significant GxE is lacking. Apart from the issue of whether it is heritable, plasticity tends to correlate with average trait expression (not fully supported by the few genetic estimates available) and may thus be evolutionary constrained in this way. Individual-specific estimates of plasticity tend to be related to other traits of the individual (including fitness), but these analyses may be anti-conservative because they predominantly concern stats-on-stats. Despite the increased interest in plasticity in wild populations, the putative lack of power to detect GxE in such populations hinders achieving general insights. I discuss possible steps to invigorate the field by moving away from simply testing for presence of GxE to analyses that ‘scale up’ to population level processes and by the development of new behavioural theory to identify quantitative genetic parameters which can be estimated.


2021 ◽  
Author(s):  
Tomos Potter ◽  
Anja Felmy

AbstractIn wild populations, large individuals have disproportionately higher reproductive output than smaller individuals. We suggest an ecological explanation for this observation: asymmetry within populations in rates of resource assimilation, where greater assimilation causes both increased reproduction and body size. We assessed how the relationship between size and reproduction differs between wild and lab-reared Trinidadian guppies. We show that (i) reproduction increased disproportionately with body size in the wild but not in the lab, where effects of resource competition were eliminated; (ii) in the wild, the scaling exponent was greatest during the wet season, when resource competition is strongest; and (iii) detection of hyperallometric scaling of reproduction is inevitable if individual differences in assimilation are ignored. We propose that variation among individuals in assimilation – caused by size-dependent resource competition, niche expansion, and chance – can explain patterns of hyperallometric scaling of reproduction in natural populations.


Botany ◽  
2016 ◽  
Vol 94 (3) ◽  
pp. 201-213
Author(s):  
Anselmo Nogueira ◽  
Pedro J. Rey ◽  
Julio M. Alcántara ◽  
Lúcia G. Lohmann

Extra-floral nectaries (EFNs) are thought to represent protective adaptations against herbivory, but studies on the evolutionary ecology of EFNs have seldom been conducted. Here we investigate the patterns of natural selection and genetic variation in EFN traits in two wild populations of Anemopaegma album Mart. ex DC. (Bignoniaceae) that have been previously described as contrasting EFN – ant adapted localities in the Neotropical savanna (Cristália and Grão Mogol). In each population, four EFN descriptors, foliar damage, and reproductive success variables were measured per plant (100–120 plants per population). To estimate the heritability of EFN traits, we crossed reproductive plants in the field, and grew offspring plants in a common garden. The results showed that ant assemblages differed between populations, as did the range of foliar herbivory. Genetic variation and positive phenotypic selection in EFN abundance were only detected in the Cristália population, in which plants with more EFNs were more likely to reproduce. An evaluation of putative causal links conducted by path analysis corroborated the existence of phenotypic selection on EFNs, which was mediated by the herbivory process in the Cristália population. While EFNs could be currently under selection in Cristália, it is possible that past selection may have driven EFN traits to become locally adapted to the local ant assemblage in the Grão Mogol population.


2020 ◽  
Author(s):  
Alexandra Sparks ◽  
Lewis G. Spurgin ◽  
Marco van der Velde ◽  
Eleanor A. Fairfield ◽  
Jan Komdeur ◽  
...  

Individual variation in telomere length is predictive of health and mortality risk across a range of species. However, the relative influence of environmental and genetic variation on individual telomere length in wild populations remains poorly understood. In previous studies, heritability of telomere length has primarily been calculated using parent-offspring regression, but shared environments can confound such estimates. Furthermore, associations with age and parental age at conception effects are typically not accounted for but can also bias heritability estimates. To control for these confounding variables, quantitative genetic ‘animal models’ can be used. However, the few studies on wild populations using this approach have been restricted by power. Here, we investigated the heritability of telomere length and parental age at conception effects in the Seychelles warbler using 2664 telomere length measures from 1318 birds over 20 years and a multi-generational pedigree. We found a weak negative within-paternal age at conception effect (as fathers aged, their offspring had shorter telomeres) and a weak positive between-maternal age at conception effect (females that survived to older ages had offspring with longer telomeres). While parent–offspring regressions did not detect heritability, animal models provided evidence that heritability of telomere length was low in this population. Environmental and technical variation largely influenced telomere length and would have biased heritability estimates if unaccounted for. Estimating the heritability of telomere length is complex, requiring large sample sizes and accounting for confounding effects in order to improve our understanding of the evolutionary potential of telomere length in the wild.


Author(s):  
Chris Flynn

This paper has been developed from a third year dissertation written as part of the Diploma in Horticulture course at the Royal Botanic Gardens, Kew. It serves as an overview of the subject of ecological planting and its potential applications within public gardens. It also outlines some scientific benefits regarding ecological studies, the impact that this type of planting may have on horticulture (both in gardens and the nursery trade), and the educational benefits for the public and school groups. The case study below looks at the viability of representing a section of Snow Gum Grassy Woodland (a vegetation type found in New South Wales, Australia) outside in Coates Wood, Wakehurst Place, UK.


2005 ◽  
Vol 14 (7) ◽  
pp. 2169-2179 ◽  
Author(s):  
AMANDA BRETMAN ◽  
TOM TREGENZA
Keyword(s):  

2018 ◽  
Vol 373 (1741) ◽  
pp. 20160449 ◽  
Author(s):  
Mats Olsson ◽  
Erik Wapstra ◽  
Christopher Friesen

We review the evolutionary ecology and genetics of telomeres in taxa that cannot elevate their body temperature to a preferred level through metabolism but do so by basking or seeking out a warm environment. This group of organisms contains all living things on earth, apart from birds and mammals. One reason for our interest in this synthetic group is the argument that high, stable body temperature increases the risk of malignant tumours if long, telomerase-restored telomeres make cells ‘live forever’. If this holds true, ectotherms should have significantly lower cancer frequencies. We discuss to what degree there is support for this ‘anti-cancer’ hypothesis in the current literature. Importantly, we suggest that ectothermic taxa, with variation in somatic telomerase expression across tissue and taxa, may hold the key to understanding ongoing selection and evolution of telomerase dynamics in the wild. We further review endotherm-specific effects of growth on telomeres, effects of autotomy (‘tail dropping’) on telomere attrition, and costs of maintaining sexual displays measured in telomere attrition. Finally, we cover plant ectotherm telomeres and life histories in a separate ‘mini review’. This article is part of the theme issue ‘Understanding diversity in telomere dynamics'.


Sign in / Sign up

Export Citation Format

Share Document