scholarly journals Muscle cell type diversification facilitated by extensive gene duplications

2020 ◽  
Author(s):  
Alison G. Cole ◽  
Sabrina Kaul ◽  
Stefan M. Jahnel ◽  
Julia Steger ◽  
Bob Zimmerman ◽  
...  

AbstractThe evolutionary mechanisms underlying the emergence of new cell types are still unclear. Here, we address the origin and diversification of muscle cells in the diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations in Nematostella differing by extensive sets of paralogous genes. The regulatory gene set of the slow cnidarian muscles and the bilaterian cardiac muscle are remarkably similar. By contrast, the two fast muscles differ substantially from each other, while driving the same set of paralogous structural protein genes. Our data suggest that extensive gene duplications and co-option of individual effector modules may have played an important role in cell type diversification during metazoan evolution.One Sentence SummaryThe study of the simple sea anemone suggests a molecular mechanism for cell type evolution and morphological complexity.

2021 ◽  
Author(s):  
Leslie S Babonis ◽  
Camille Enjolras ◽  
Joseph F Ryan ◽  
Mark Q Martindale

AbstractCnidocytes (“stinging cells”) are an unequivocally novel cell type used by cnidarians (corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes evolved by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we uncover a mechanism by which a truly novel regulatory gene (ZNF845) promoted the origin of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).SignificanceIn this study, we demonstrate how new cell types can arise in animals through duplication of an ancestral (old) cell type followed by functional divergence of the new daughter cell. Specifically, we show that stinging cells in cnidarians (jellyfish and corals) evolved by duplication of an ancestral neuron followed by inhibition of the RFamide neuropeptide it once secreted. This is the first evidence that stinging cells evolved from a specific subtype of neurons and suggests some neurons may be easier to co-opt for novel functions than others.


2009 ◽  
Vol 13 (11-12) ◽  
pp. 4532-4539 ◽  
Author(s):  
Maksym I. Harhun ◽  
Kinga Szewczyk ◽  
Holger Laux ◽  
Sally A. Prestwich ◽  
Dmitri V. Gordienko ◽  
...  

1996 ◽  
Vol 5 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Jonathan Dinsmore ◽  
Judson Ratliff ◽  
Terry Deacon ◽  
Peyman Pakzaba ◽  
Douglas Jacoby ◽  
...  

The controlled differentiation of mouse embryonic stem (ES) cells into near homogeneous populations of both neurons and skeletal muscle cells that can survive and function in vivo after transplantation is reported. We show that treatment of pluripotent ES cells with retinoic acid (RA) and dimethylsulfoxide (DMSO) induce differentiation of these cells into highly enriched populations of γ-aminobutyric acid (GABA) expressing neurons and skeletal myoblasts, respectively. For neuronal differentiation, RA alone is sufficient to induce ES cells to differentiate into neuronal cells that show properties of postmitotic neurons both in vitro and in vivo. In vivo function of RA-induced neuronal cells was demonstrated by transplantation into the quinolinic acid lesioned striatum of rats (a rat model for Huntington's disease), where cells integrated and survived for up to 6 wk. The response of embryonic stem cells to DMSO to form muscle was less dramatic than that observed for RA. DMSO-induced ES cells formed mixed populations of muscle cells composed of cardiac, smooth, and skeletal muscle instead of homogeneous populations of a single muscle cell type. To determine whether the response of ES cells to DMSO induction could be further controlled, ES cells were stably transfected with a gene coding for the muscle-specific regulatory factor, MyoD. When induced with DMSO, ES cells constitutively expressing high levels of MyoD differentiated exclusively into skeletal myoblasts (no cardiac or smooth muscle cells) that fused to form myotubes capable of spontaneous contraction. Thus, the specific muscle cell type formed was controlled by the expression of MyoD. These results provided evidence that the specific cell type formed (whether it be muscle, neuronal, or other cell types) can be controlled in vitro. Further, these results demonstrated that ES cells can provide a source of multiple differentiated cell types that can be used for transplantation.


Nature ◽  
1996 ◽  
Vol 382 (6590) ◽  
pp. 452-455 ◽  
Author(s):  
Peter D. Currie ◽  
Phillip W. Ingham

2021 ◽  
Author(s):  
Xingyan Liu ◽  
Qunlun Shen ◽  
Shihua Zhang

Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of cellular diversity and the evolutionary mechanisms that shape cellular form and function. Here, we aimed to utilize a heterogeneous graph neural network to learn aligned and interpretable cell and gene embeddings for cross-species cell type assignment and gene module extraction (CAME) from scRNA-seq data. A systematic evaluation study on 649 pairs of cross-species datasets showed that CAME outperformed six benchmarking methods in terms of cell-type assignment and model robustness to insufficiency and inconsistency of sequencing depths. Comparative analyses of the major types of human and mouse brains by CAME revealed shared cell type-specific functions in homologous gene modules. Alignment of the trajectories of human and macaque spermatogenesis by CAME revealed conservative gene expression dynamics during spermatogenesis between humans and macaques. Owing to the utilization of non-one-to-one homologous gene mappings, CAME made a significant improvement on cell-type characterization cross zebrafish and other species. Overall, CAME can not only make an effective cross-species assignment of cell types on scRNA-seq data but also reveal evolutionary conservative and divergent features between species.


2020 ◽  
Vol 6 (15) ◽  
pp. eaax8382
Author(s):  
Buntaro Zempo ◽  
Yasuhiro Yamamoto ◽  
Tory Williams ◽  
Fumihito Ono

For decades, numerous studies have proposed that fast muscles contribute to quick movement, while slow muscles underlie locomotion requiring endurance. By generating mutant zebrafish whose fast muscles are synaptically silenced, we examined the contribution of fast muscles in both larval and adult zebrafish. In the larval stage, mutants lacked the characteristic startle response to tactile stimuli: bending of the trunk (C-bend) followed by robust forward propulsion. Unexpectedly, adult mutants with silenced fast muscles showed robust C-bends and forward propulsion upon stimulation. Retrograde labeling revealed that motor neurons genetically programmed to form synapses on fast muscles are instead rerouted and innervate slow muscles, which led to partial conversion of slow and intermediate muscles to fast muscles. Thus, extended silencing of fast muscle synapses changed motor neuron innervation and caused muscle cell type conversion, revealing an unexpected mechanism of locomotory adaptation.


1999 ◽  
Vol 216 (2) ◽  
pp. 469-480 ◽  
Author(s):  
K.E Lewis ◽  
P.D Currie ◽  
S Roy ◽  
H Schauerte ◽  
P Haffter ◽  
...  

2021 ◽  
Author(s):  
Ryan S O'Neill ◽  
Afeez Sodeinde ◽  
Frances C Welsh ◽  
Brian J Galletta ◽  
Carey J Fagerstrom ◽  
...  

Centrosomes are multi-protein complexes that function as the major microtubule organizing center (MTOC) for the cell. While centrosomes play tissue-specific MTOC functions, little is known about how particular centrosome proteins are regulated across cell types to achieve these different functions. To investigate this cell type-specific diversity, we searched for gene duplications of centrosome genes in the Drosophila lineage with the aim of identifying centrosome gene duplications where each copy evolved for specialized functions. Through in depth functional analysis of a Spd-2 gene duplication in the Willistoni group, we discovered differences in the regulation of PCM in somatic and male germline cells. The parental gene, Spd-2A, is expressed in somatic cells, where it can function to organize pericentriolar material (PCM) and the mitotic spindle in larval brain neuroblasts. Spd-2A is absent during male meiosis, and even when ectopically expressed in spermatocytes it fails to rescue PCM and spindle organization. In contrast, the new gene duplicate, Spd-2B, is expressed specifically in spermatocytes. During male meiosis, Spd-2B localizes to centrosomes, organizes PCM and spindles, and is sufficient for proper male fertility. Experiments using chimeric transgenes reveal that differences in the C-terminal tails of Spd-2A and Spd-2B are responsible for these functional changes. Thus, Spd-2A and Spd-2B have evolved complementary functions by specializing for distinct subsets of cells. Together, our results demonstrate that somatic cells and male germline cells have fundamentally different requirements for PCM, suggesting that PCM proteins such as Spd-2 is differentially regulated across cell types to satisfy distinct requirements.


Author(s):  
G. Rowden ◽  
M. G. Lewis ◽  
T. M. Phillips

Langerhans cells of mammalian stratified squamous epithelial have proven to be an enigma since their discovery in 1868. These dendritic suprabasal cells have been considered as related to melanocytes either as effete cells, or as post divisional products. Although grafting experiments seemed to demonstrate the independence of the cell types, much confusion still exists. The presence in the epidermis of a cell type with morphological features seemingly shared by melanocytes and Langerhans cells has been especially troublesome. This so called "indeterminate", or " -dendritic cell" lacks both Langerhans cells granules and melanosomes, yet it is clearly not a keratinocyte. Suggestions have been made that it is related to either Langerhans cells or melanocyte. Recent studies have unequivocally demonstrated that Langerhans cells are independent cells with immune function. They display Fc and C3 receptors on their surface as well as la (immune region associated) antigens.


Sign in / Sign up

Export Citation Format

Share Document