scholarly journals Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder

Author(s):  
Changchang Yin ◽  
Ruoqi Liu ◽  
Dongdong Zhang ◽  
Ping Zhang

Sepsis is a heterogeneous clinical syndrome that is the leading cause of mortality in hospital intensive care units (ICUs). Identification of sepsis subphenotypes may allow for more precise treatments and lead to more targeted clinical interventions. Recently, sepsis subtyping on electronic health records (EHRs) has attracted interest from healthcare researchers. However, most sepsis subtyping studies ignore the temporality of EHR data and suffer from missing values. In this paper, we propose a new sepsis subtyping framework to address the two issues. Our subtyping framework consists of a novel Time-Aware Multi-modal auto-Encoder (TAME) model which introduces time-aware attention mechanism and incorporates multi-modal inputs (e.g., demographics, diagnoses, medications, lab tests and vital signs) to impute missing values, a dynamic time wrapping (DTW) method to measure patients' temporal similarity based on the imputed EHR data, and a weighted k-means algorithm to cluster patients. Comprehensive experiments on real-world datasets show TAME outperforms the baselines on imputation accuracy. After analyzing TAME-imputed EHR data, we identify four novel subphenotypes of sepsis patients, paving the way for improved personalization of sepsis management.

2020 ◽  
Vol 34 (01) ◽  
pp. 930-937
Author(s):  
Qingxiong Tan ◽  
Mang Ye ◽  
Baoyao Yang ◽  
Siqi Liu ◽  
Andy Jinhua Ma ◽  
...  

Due to the discrepancy of diseases and symptoms, patients usually visit hospitals irregularly and different physiological variables are examined at each visit, producing large amounts of irregular multivariate time series (IMTS) data with missing values and varying intervals. Existing methods process IMTS into regular data so that standard machine learning models can be employed. However, time intervals are usually determined by the status of patients, while missing values are caused by changes in symptoms. Therefore, we propose a novel end-to-end Dual-Attention Time-Aware Gated Recurrent Unit (DATA-GRU) for IMTS to predict the mortality risk of patients. In particular, DATA-GRU is able to: 1) preserve the informative varying intervals by introducing a time-aware structure to directly adjust the influence of the previous status in coordination with the elapsed time, and 2) tackle missing values by proposing a novel dual-attention structure to jointly consider data-quality and medical-knowledge. A novel unreliability-aware attention mechanism is designed to handle the diversity in the reliability of different data, while a new symptom-aware attention mechanism is proposed to extract medical reasons from original clinical records. Extensive experimental results on two real-world datasets demonstrate that DATA-GRU can significantly outperform state-of-the-art methods and provide meaningful clinical interpretation.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a pharmaceutical early warning model to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose a new early warning score model for detecting cardiac arrest via pharmaceutical classification and by using a sliding window; we apply learning-based algorithms to time-series data for a Pharmaceutical Early Warning Scoring Model (PEWSM). By treating pharmaceutical features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits, and replenishers and regulators of water and electrolytes. The best AUROC of bits is 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, LSTM yields better performance with time-series data. The proposed PEWSM, which offers 4-hour predictions, is better than the National Early Warning Score (NEWS) in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


2021 ◽  
Author(s):  
Shaan Khurshid ◽  
Christopher Reeder ◽  
Lia X Harrington ◽  
Pulkit Singh ◽  
Gopal Sarma ◽  
...  

Background: Electronic health records (EHRs) promise to enable broad-ranging discovery with power exceeding that of conventional research cohort studies. However, research using EHR datasets may be subject to selection bias, which can be compounded by missing data, limiting the generalizability of derived insights. Methods: Mass General Brigham (MGB) is a large New England-based healthcare network comprising seven tertiary care and community hospitals with associated outpatient practices. Within an MGB-based EHR warehouse of >3.5 million individuals with at least one ambulatory care visit, we approximated a community-based cohort study by selectively sampling individuals longitudinally attending primary care practices between 2001-2018 (n=520,868), which we named the Community Care Cohort Project (C3PO). We also utilized pre-trained deep natural language processing (NLP) models to recover vital signs (i.e., height, weight, and blood pressure) from unstructured notes in the EHR. We assessed the validity of C3PO by deploying established risk models including the Pooled Cohort Equations (PCE) and the Cohorts for Aging and Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) score, and compared model performance in C3PO to that observed within typical EHR Convenience Samples which included all individuals from the same parent EHR with sufficient data to calculate each score but without a requirement for longitudinal primary care. All analyses were facilitated by the JEDI Extractive Data Infrastructure pipeline which we designed to efficiently aggregate EHR data within a unified framework conducive to regular updates. Results: C3PO includes 520,868 individuals (mean age 48 years, 61% women, median follow-up 7.2 years, median primary care visits per individual 13). Estimated using reports, C3PO contains over 2.9 million electrocardiograms, 450,000 echocardiograms, 12,000 cardiac magnetic resonance images, and 75 million narrative notes. Using tabular data alone, 286,009 individuals (54.9%) had all vital signs available at baseline, which increased to 358,411 (68.8%) after NLP recovery (31% reduction in missingness). Among individuals with both NLP and tabular data available, NLP-extracted and tabular vital signs obtained on the same day were highly correlated (e.g., Pearson r range 0.95-0.99, p<0.01 for all). Both the PCE models (c-index range 0.724-0.770) and CHARGE-AF (c-index 0.782, 95% 0.777-0.787) demonstrated good discrimination. As compared to the Convenience Samples, AF and MI/stroke incidence rates in C3PO were lower and calibration error was smaller for both PCE (integrated calibration index range 0.012-0.030 vs. 0.028-0.046) and CHARGE-AF (0.028 vs. 0.036). Conclusions: Intentional sampling of individuals receiving regular ambulatory care and use of NLP to recover missing data have the potential to reduce bias in EHR research and maximize generalizability of insights.


2020 ◽  
Vol 69 ◽  
pp. 1255-1285
Author(s):  
Ricardo Cardoso Pereira ◽  
Miriam Seoane Santos ◽  
Pedro Pereira Rodrigues ◽  
Pedro Henriques Abreu

Missing data is a problem often found in real-world datasets and it can degrade the performance of most machine learning models. Several deep learning techniques have been used to address this issue, and one of them is the Autoencoder and its Denoising and Variational variants. These models are able to learn a representation of the data with missing values and generate plausible new ones to replace them. This study surveys the use of Autoencoders for the imputation of tabular data and considers 26 works published between 2014 and 2020. The analysis is mainly focused on discussing patterns and recommendations for the architecture, hyperparameters and training settings of the network, while providing a detailed discussion of the results obtained by Autoencoders when compared to other state-of-the-art methods, and of the data contexts where they have been applied. The conclusions include a set of recommendations for the technical settings of the network, and show that Denoising Autoencoders outperform their competitors, particularly the often used statistical methods.


Author(s):  
Thelma Dede Baddoo ◽  
Zhijia Li ◽  
Samuel Nii Odai ◽  
Kenneth Rodolphe Chabi Boni ◽  
Isaac Kwesi Nooni ◽  
...  

Reconstructing missing streamflow data can be challenging when additional data are not available, and missing data imputation of real-world datasets to investigate how to ascertain the accuracy of imputation algorithms for these datasets are lacking. This study investigated the necessary complexity of missing data reconstruction schemes to obtain the relevant results for a real-world single station streamflow observation to facilitate its further use. This investigation was implemented by applying different missing data mechanisms spanning from univariate algorithms to multiple imputation methods accustomed to multivariate data taking time as an explicit variable. The performance accuracy of these schemes was assessed using the total error measurement (TEM) and a recommended localized error measurement (LEM) in this study. The results show that univariate missing value algorithms, which are specially developed to handle univariate time series, provide satisfactory results, but the ones which provide the best results are usually time and computationally intensive. Also, multiple imputation algorithms which consider the surrounding observed values and/or which can understand the characteristics of the data provide similar results to the univariate missing data algorithms and, in some cases, perform better without the added time and computational downsides when time is taken as an explicit variable. Furthermore, the LEM would be especially useful when the missing data are in specific portions of the dataset or where very large gaps of ‘missingness’ occur. Finally, proper handling of missing values of real-world hydroclimatic datasets depends on imputing and extensive study of the particular dataset to be imputed.


2021 ◽  
pp. 1-12
Author(s):  
Maria Thurow ◽  
Florian Dumpert ◽  
Burim Ramosaj ◽  
Markus Pauly

In statistical survey analysis, (partial) non-responders are integral elements during data acquisition. Treating missing values during data preparation and data analysis is therefore a non-trivial underpinning. Focusing on the German Structure of Earnings data from the Federal Statistical Office of Germany (DESTATIS), we investigate various imputation methods regarding their imputation accuracy and its impact on parameter estimates in the analysis phase after imputation. Since imputation accuracy measures are not uniquely determined in theory and practice, we study different measures for assessing imputation accuracy: Beyond the most common measures, the normalized-root mean squared error (NRMSE) and the proportion of false classification (PFC), we put a special focus on (distribution) distance measures for assessing imputation accuracy. The aim is to deliver guidelines for correctly assessing distributional accuracy after imputation and the potential effect on parameter estimates such as the mean gross income. Our empirical findings indicate a discrepancy between the NRMSE resp. PFC and distance measures. While the latter measure distributional similarities, NRMSE and PFC focus on data reproducibility. We realize that a low NRMSE or PFC is in general not accompanied by lower distributional discrepancies. However, distributional based measures correspond with more accurate parameter estimates such as mean gross income under the (multiple) imputation scheme.


2010 ◽  
Vol 6 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Shichao Zhang

In this paper, the author designs an efficient method for imputing iteratively missing target values with semi-parametric kernel regression imputation, known as the semi-parametric iterative imputation algorithm (SIIA). While there is little prior knowledge on the datasets, the proposed iterative imputation method, which impute each missing value several times until the algorithms converges in each model, utilize a substantially useful amount of information. Additionally, this information includes occurrences involving missing values as well as capturing the real dataset distribution easier than the parametric or nonparametric imputation techniques. Experimental results show that the author’s imputation methods outperform the existing methods in terms of imputation accuracy, in particular in the situation with high missing ratio.


2018 ◽  
Vol 4 ◽  
pp. 205520761880465 ◽  
Author(s):  
Tim Robbins ◽  
Sarah N Lim Choi Keung ◽  
Sailesh Sankar ◽  
Harpal Randeva ◽  
Theodoros N Arvanitis

Introduction Electronic health records provide an unparalleled opportunity for the use of patient data that is routinely collected and stored, in order to drive research and develop an epidemiological understanding of disease. Diabetes, in particular, stands to benefit, being a data-rich, chronic-disease state. This article aims to provide an understanding of the extent to which the healthcare sector is using routinely collected and stored data to inform research and epidemiological understanding of diabetes mellitus. Methods Narrative literature review of articles, published in both the medical- and engineering-based informatics literature. Results There has been a significant increase in the number of papers published, which utilise electronic health records as a direct data source for diabetes research. These articles consider a diverse range of research questions. Internationally, the secondary use of electronic health records, as a research tool, is most prominent in the USA. The barriers most commonly described in research studies include missing values and misclassification, alongside challenges of establishing the generalisability of results. Discussion Electronic health record research is an important and expanding area of healthcare research. Much of the research output remains in the form of conference abstracts and proceedings, rather than journal articles. There is enormous opportunity within the United Kingdom to develop these research methodologies, due to national patient identifiers. Such a healthcare context may enable UK researchers to overcome many of the barriers encountered elsewhere and thus to truly unlock the potential of electronic health records.


Sign in / Sign up

Export Citation Format

Share Document