scholarly journals Petabase-scale sequence alignment catalyses viral discovery

Author(s):  
Robert C. Edgar ◽  
Jeff Taylor ◽  
Tomer Altman ◽  
Pierre Barbera ◽  
Dmitry Meleshko ◽  
...  

AbstractPublic sequence data represents a major opportunity for viral discovery, but its exploration has been inhibited by a lack of efficient methods for searching this corpus, which is currently at the petabase scale and growing exponentially. To address the ongoing pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 and expand the known sequence diversity of viruses, we aligned pangenomes for coronaviruses (CoV) and other viral families to 5.6 petabases of public sequencing data from 3.8 million biologically diverse samples. To implement this strategy, we developed a cloud computing architecture, Serratus, tailored for ultra-high throughput sequence alignment at the petabase scale. From this search, we identified and assembled thousands of CoV and CoV-like genomes and genome fragments ranging from known strains to putatively novel genera. We generalise this strategy to other viral families, identifying several novel deltaviruses and huge bacteriophages. To catalyse a new era of viral discovery we made millions of viral alignments and family identifications freely available to the research community. Expanding the known diversity and zoonotic reservoirs of CoV and other emerging pathogens can accelerate vaccine and therapeutic developments for the current pandemic, and help us anticipate and mitigate future ones.

2014 ◽  
Vol 490-491 ◽  
pp. 757-762
Author(s):  
Guo Li Ji ◽  
Long Teng Chen ◽  
Liang Liang Chen

This paper proposed a way of two-level parallel alignment based on sequence parallel vectorization with GPU acceleration on the Fermi architecture, which integrates sequence parallel vectorization, parallel k-means clustering approximate alignment and parallel Smith-Waterman algorithm. The method converts sequence alignment into vector alignment by first. Then it uses k-means alignment to divide sequences into several groups and reduce the size of sequence data. The expected accurate alignment result is achieved using parallel Smith-Waterman algorithm. The high-throughput mouse T-cell receptor (TCR) sequences were used to validate the proposed method. Under the same hardware condition, comparing to serial Smith-Waterman algorithm and CUDASW++2.0 algorithm, our method is the most efficient alignment algorithm with high alignment accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric S. Tvedte ◽  
Jane Michalski ◽  
Shaoji Cheng ◽  
Rayanna S. Patkus ◽  
Luke J. Tallon ◽  
...  

AbstractLibrary preparation for high-throughput sequencing applications is a critical step in producing representative, unbiased sequencing data. The iGenomX Riptide High Throughput Rapid Library Prep Kit purports to provide high-quality sequencing data with lower costs compared to other Illumina library kits. To test these claims, we compared sequence data quality of Riptide libraries to libraries constructed with KAPA Hyper and NEBNext Ultra. Across several single-source genome samples, mapping performance and de novo assembly of Riptide libraries were similar to conventional libraries prepared with the same DNA. Poor performance of some libraries resulted in low sequencing depth. In particular, degraded DNA samples may be challenging to sequence with Riptide. There was little cross-well plate contamination with the overwhelming majority of reads belong to the proper source genomes. The sequencing of metagenome samples using different Riptide primer sets resulted in variable taxonomic assignment of reads. Increased adoption of the Riptide kit will decrease library preparation costs. However, this method might not be suitable for degraded DNA.


2016 ◽  
Vol 14 (03) ◽  
pp. 1630002 ◽  
Author(s):  
Muhammad Sardaraz ◽  
Muhammad Tahir ◽  
Ataul Aziz Ikram

Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.


2020 ◽  
Author(s):  
Md. Nafis Ul Alam ◽  
Umar Faruq Chowdhury

AbstractHigh throughout sequencing technologies have greatly enabled the study of genomics, transcriptomics and metagenomics. Automated annotation and classification of the vast amounts of generated sequence data has become paramount for facilitating biological sciences. Genomes of viruses can be radically different from all life, both in terms of molecular structure and primary sequence. Alignment-based and profile-based searches are commonly employed for characterization of assembled viral contigs from high-throughput sequencing data. Recent attempts have highlighted the use of machine learning models for the task but these models rely entirely on DNA genomes and owing to the intrinsic genomic complexity of viruses, RNA viruses have gone completely overlooked. Here, we present a novel short k-mer based sequence scoring method that generates robust sequence information for training machine learning classifiers. We trained 18 classifiers for the task of distinguishing viral RNA from human transcripts. We challenged our models with very stringent testing protocols across different species and evaluated performance against BLASTn, BLASTx and HMMER3 searches. For clean sequence data retrieved from curated databases, our models display near perfect accuracy, outperforming all similar attempts previously reported. On de-novo assemblies of raw RNA-Seq data from cells subjected to Ebola virus, the area under the ROC curve varied from 0.6 to 0.86 depending on the software used for assembly. Our classifier was able to properly classify the majority of the false hits generated by BLAST and HMMER3 searches on the same data. The outstanding performance metrics of our model lays the groundwork for robust machine learning methods for the automated annotation of sequence data.Author SummaryIn this age of high-throughput sequencing, proper classification of copious amounts of sequence data remains to be a daunting challenge. Presently, sequence alignment methods are immediately assigned to the task. Owing to the selection forces of nature, there is considerable homology even between the sequences of different species which draws ambiguity to the results of alignment-based searches. Machine Learning methods are becoming more reliable for characterizing sequence data, but virus genomes are more variable than all forms of life and viruses with RNA-based genomes have gone overlooked in previous machine learning attempts. We designed a novel short k-mer based scoring criteria whereby a large number of highly robust numerical feature sets can be derived from sequence data. These features were able to accurately distinguish virus RNA from human transcripts with performance scores better than all previous reports. Our models were able to generalize well to distant species of viruses and mouse transcripts. The model correctly classifies the majority of false hits generated by current standard alignment tools. These findings strongly imply that this k-mer score based computational pipeline forges a highly informative, rich set of numerical machine learning features and similar pipelines can greatly advance the field of computational biology.


2013 ◽  
Vol 35 (6) ◽  
pp. 685-694
Author(s):  
Ting-Zhang WANG ◽  
Gao SHAN ◽  
Jian-Hong XU ◽  
Qing-Zhong XUE

Sign in / Sign up

Export Citation Format

Share Document