scholarly journals Sofosbuvir Terminated RNA is More Resistant to SARS-CoV-2 Proofreader than RNA Terminated by Remdesivir

2020 ◽  
Author(s):  
Steffen Jockusch ◽  
Chuanjuan Tao ◽  
Xiaoxu Li ◽  
Minchen Chien ◽  
Shiv Kumar ◽  
...  

AbstractSARS-CoV-2 is responsible for COVID-19, resulting in the largest pandemic in over a hundred years. After examining the molecular structures and activities of hepatitis C viral inhibitors and comparing hepatitis C virus and coronavirus replication, we previously postulated that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) might inhibit SARS-CoV-2.1 We subsequently demonstrated that Sofosbuvir triphosphate is incorporated by the relatively low fidelity SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases (RdRps), serving as an immediate polymerase reaction terminator, but not by a host-like high fidelity DNA polymerase.2,3 Other investigators have since demonstrated the ability of Sofosbuvir to inhibit SARS-CoV-2 replication in lung and brain cells;4,5 additionally, COVID-19 clinical trials with EPCLUSA6 and with Sofosbuvir plus Daclatasvir7 have been initiated in several countries. SARS-CoV-2 has an exonuclease-based proofreader to maintain the viral genome integrity.8 Any effective antiviral targeting the SARS-CoV-2 RdRp must display a certain level of resistance to this proofreading activity. We report here that Sofosbuvir terminated RNA resists removal by the exonuclease to a substantially higher extent than RNA terminated by Remdesivir, another drug being used as a COVID-19 therapeutic. These results offer a molecular basis supporting the current use of Sofosbuvir in combination with other drugs in COVID-19 clinical trials.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Steffen Jockusch ◽  
Chuanjuan Tao ◽  
Xiaoxu Li ◽  
Minchen Chien ◽  
Shiv Kumar ◽  
...  

Abstract SARS-CoV-2 is responsible for COVID-19, resulting in the largest pandemic in over a hundred years. After examining the molecular structures and activities of hepatitis C viral inhibitors and comparing hepatitis C virus and coronavirus replication, we previously postulated that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) might inhibit SARS-CoV-2. We subsequently demonstrated that Sofosbuvir triphosphate is incorporated by the relatively low fidelity SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases (RdRps), serving as an immediate polymerase reaction terminator, but not by a host-like high fidelity DNA polymerase. Other investigators have since demonstrated the ability of Sofosbuvir to inhibit SARS-CoV-2 replication in lung and brain cells; additionally, COVID-19 clinical trials with EPCLUSA and with Sofosbuvir plus Daclatasvir have been initiated in several countries. SARS-CoV-2 has an exonuclease-based proofreader to maintain the viral genome integrity. Any effective antiviral targeting the SARS-CoV-2 RdRp must display a certain level of resistance to this proofreading activity. We report here that Sofosbuvir terminated RNA resists removal by the exonuclease to a substantially higher extent than RNA terminated by Remdesivir, another drug being used as a COVID-19 therapeutic. These results offer a molecular basis supporting the current use of Sofosbuvir in combination with other drugs in COVID-19 clinical trials.


Author(s):  
Minchen Chien ◽  
Thomas K. Anderson ◽  
Steffen Jockusch ◽  
Chuanjuan Tao ◽  
Shiv Kumar ◽  
...  

AbstractSARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 pandemic. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). Here, using polymerase extension experiments, we have demonstrated that the active triphosphate form of Sofosbuvir (a key component of the FDA approved hepatitis C drug EPCLUSA), is incorporated by SARS-CoV-2 RdRp, and blocks further incorporation. Using the same molecular insight, we selected the active triphosphate forms of three other anti-viral agents, Alovudine, AZT (an FDA approved HIV/AIDS drug) and Tenofovir alafenamide (TAF, an FDA approved drug for HIV and hepatitis B) for evaluation as inhibitors of SARS-CoV-2 RdRp. We demonstrated the ability of these three viral polymerase inhibitors, 3’-fluoro-3’-deoxythymidine triphosphate, 3’-azido-3’-deoxythymidine triphosphate and Tenofovir diphosphate (the active triphosphate forms of Alovudine, AZT and TAF, respectively) to be incorporated by SARS-CoV-2 RdRp, where they also terminate further polymerase extension. These results offer a strong molecular basis for these nucleotide analogues to be evaluated as potential therapeutics for COVID-19.


Author(s):  
Xavier Forns ◽  
Jordan J. Feld ◽  
Douglas E. Dylla ◽  
Stanislas Pol ◽  
Kazuaki Chayama ◽  
...  

2004 ◽  
Vol 48 (8) ◽  
pp. 591-598 ◽  
Author(s):  
Yuki Takigawa ◽  
Motoko Nagano-Fujii ◽  
Lin Deng ◽  
Rachmat Hidajat ◽  
Motofumi Tanaka ◽  
...  

Virology ◽  
2016 ◽  
Vol 494 ◽  
pp. 236-247 ◽  
Author(s):  
Vyas Ramanan ◽  
Kartik Trehan ◽  
Mei.-Lyn. Ong ◽  
Joseph M. Luna ◽  
Hans.-Heinrich Hoffmann ◽  
...  

2021 ◽  
Author(s):  
Haruhiko Takeda ◽  
Atsushi Takai ◽  
Eriko Iguchi ◽  
Masako Mishima ◽  
Soichi Arasawa ◽  
...  

Abstract Hepatocellular carcinoma (HCC) developing after hepatitis C virus (HCV) eradication is a serious clinical concern. However, molecular basis for the hepatocarcinogenesis after sustained virologic response (SVR) remains unclear. In this study, we aimed to unveil the transcriptomic profile of post-SVR liver tissues and explore the molecules associated with post-SVR carcinogenesis. We analysed 90 RNA-sequencing datasets, consisting of noncancerous liver tissues including 20 post-SVR, 40 HCV-positive and 7 normal livers, along with Huh7 cell line specimens before and after HCV infection and eradication. Comparative analysis demonstrated that cell cycle- and mitochondrial function-associated pathways were altered only in HCV-positive noncancerous liver tissues, while some cancer-related pathways were upregulated in the noncancerous liver tissues of both post-SVR and HCV-positive cases. The persistent upregulation of carcinogenesis-associated gene clusters after viral clearance was reconfirmed through in vitro experiments, of which, CYR61, associated with liver fibrosis and carcinogenesis in several cancer types, was the top enriched gene and co-expressed with cell proliferation-associated gene modules. To evaluate whether this molecule could be a predictor of hepatocarcinogenesis after cure of HCV infection, we also examined 127 sera from independent HCV-positive cohorts treated with direct-acting antivirals, including 60 post-SVR-HCC patients, and found that the elevated serum Cyr61 was significantly associated with early carcinogenesis after receiving direct-acting antiviral therapy. In conclusion, some oncogenic transcriptomic profiles are sustained in liver tissues after HCV eradication, which might be a molecular basis for the liver cancer development even after viral clearance. Among them, upregulated CYR61 could be a possible biomarker for post-SVR HCC.


2010 ◽  
Vol 84 (11) ◽  
pp. 5824-5835 ◽  
Author(s):  
Takahiro Masaki ◽  
Ryosuke Suzuki ◽  
Mohsan Saeed ◽  
Ken-ichi Mori ◽  
Mami Matsuda ◽  
...  

ABSTRACT In this study, we used an RNA polymerase I (Pol I) transcription system for development of a reverse genetics protocol to produce hepatitis C virus (HCV), which is an uncapped positive-strand RNA virus. Transfection with a plasmid harboring HCV JFH-1 full-length cDNA flanked by a Pol I promoter and Pol I terminator yielded an unspliced RNA with no additional sequences at either end, resulting in efficient RNA replication within the cytoplasm and subsequent production of infectious virions. Using this technology, we developed a simple replicon trans-packaging system, in which transient transfection of two plasmids enables examination of viral genome replication and virion assembly as two separate steps. In addition, we established a stable cell line that constitutively produces HCV with a low mutation frequency of the viral genome. The effects of inhibitors of N-linked glycosylation on HCV production were evaluated using this cell line, and the results suggest that certain step(s), such as virion assembly, intracellular trafficking, and secretion, are potentially up- and downregulated according to modifications of HCV envelope protein glycans. This Pol I-based HCV expression system will be beneficial for a high-throughput antiviral screening and vaccine discovery programs.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 223 ◽  
Author(s):  
Sara Sobhy Kishta ◽  
Reem El-Shenawy ◽  
Sobhy Ahmed Kishta

Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs (e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness.


2009 ◽  
Vol 83 (10) ◽  
pp. 5137-5147 ◽  
Author(s):  
Hiromichi Hara ◽  
Hideki Aizaki ◽  
Mami Matsuda ◽  
Fumiko Shinkai-Ouchi ◽  
Yasushi Inoue ◽  
...  

ABSTRACT Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document