scholarly journals Activation of G-protein coupled receptors is thermodynamically linked to lipid solvation

2020 ◽  
Author(s):  
Alison N. Leonard ◽  
Edward Lyman

AbstractPreferential lipid solvation of the G-protein coupled A2A adenosine receptor (A2AR) is evaluated from 35 μsec of all-atom molecular dynamics simulation. A coarse-grained transition matrix algorithm is developed to overcome slow equilibration of the first solvation shell, obtaining statistically robust estimates of the free energy of solvation by different lipids for the receptor in different activation states. Results indicate preference for solvation by unsaturated chains, which favors the active receptor. A model for lipid-dependent GPCR activity is proposed in which the chemical potential of lipids in the bulk membrane modulates receptor activity. The enthalpy and entropy associated with moving saturated vs. unsaturated lipids from bulk to A2AR’s first solvation shell are compared. In the simulated mixture, saturated chains are disordered (i.e., obtain a favorable entropic contribution) when partitioning to the receptor surface, but this is outweighed by a favorable enthalpic contribution for unsaturated chains to occupy the first solvation shell.

2016 ◽  
Vol 44 (2) ◽  
pp. 613-618 ◽  
Author(s):  
Francesca Fanelli ◽  
Angelo Felline ◽  
Francesco Raimondi ◽  
Michele Seeber

G protein coupled receptors (GPCRs) are allosteric proteins whose functioning fundamentals are the communication between the two poles of the helix bundle. Protein structure network (PSN) analysis is one of the graph theory-based approaches currently used to investigate the structural communication in biomolecular systems. Information on system's dynamics can be provided by atomistic molecular dynamics (MD) simulations or coarse grained elastic network models paired with normal mode analysis (ENM–NMA). The present review article describes the application of PSN analysis to uncover the structural communication in G protein coupled receptors (GPCRs). Strategies to highlight changes in structural communication upon misfolding, dimerization and activation are described. Focus is put on the ENM–NMA-based strategy applied to the crystallographic structures of rhodopsin in its inactive (dark) and signalling active (meta II (MII)) states, highlighting changes in structure network and centrality of the retinal chromophore in differentiating the inactive and active states of the receptor.


2020 ◽  
Vol 60 (10) ◽  
pp. 5103-5116 ◽  
Author(s):  
Jakob Schneider ◽  
Ksenia Korshunova ◽  
Zeineb Si Chaib ◽  
Alejandro Giorgetti ◽  
Mercedes Alfonso-Prieto ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yoko Ishino ◽  
Takanori Harada

This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs) with high accuracy, while aiming for the use of the predicted 3D structures inin silicovirtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.


2019 ◽  
Author(s):  
Wanchao Yin ◽  
Zhihai Li ◽  
Mingliang Jin ◽  
Yu-Ling Yin ◽  
Parker W. de Waal ◽  
...  

AbstractArrestins comprise a family of signal regulators of G-protein-coupled receptors (GPCRs), which include arrestins 1 to 4. While arrestins 1 and 4 are visual arrestins dedicated to rhodopsin, arrestins 2 and 3 (Arr2 and Arr3) are β-arrestins known to regulate many nonvisual GPCRs. The dynamic and promiscuous coupling of Arr2 to nonvisual GPCRs has posed technical challenges to tackle the basis of arrestin binding to GPCRs. Here we report the structure of Arr2 in complex with neurotensin receptor 1 (NTSR1), which reveals an overall assembly that is strikingly different from the visual arrestin-rhodopsin complex by a 90° rotation of Arr2 relative to the receptor. In this new configuration, intracellular loop 3 (ICL3) and transmembrane helix 6 (TM6) of the receptor are oriented toward the N-terminal domain of the arrestin, making it possible for GPCRs that lack the C-terminal tail to couple Arr2 through their ICL3. Molecular dynamics simulation and crosslinking data further support the assembly of the Arr2–NTSR1 complex. Sequence analysis and homology modeling suggest that the Arr2–NTSR1 complex structure may provide an alternative template for modeling arrestin-GPCR interactions.


2017 ◽  
Vol 57 (3) ◽  
pp. 562-571 ◽  
Author(s):  
Bartholomé Delort ◽  
Pedro Renault ◽  
Landry Charlier ◽  
Florent Raussin ◽  
Jean Martinez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document