scholarly journals The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation

2020 ◽  
Author(s):  
Tapan Sharma ◽  
Hanna Witwicka ◽  
Anthony N. Imbalzano

ABSTRACTSkeletal muscle differentiation induces changes in the epigenome of myoblasts as they proceed towards a myogenic phenotype. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors and are key regulators of differentiation. Three mSWI/SNF proteins, the mutually exclusive ATPases, BRG1 and BRM, and the BAF180 protein (Polybromo1, PBRM1) contain bromodomains belonging to the same structural subfamily. Bromodomains bind to acetylated lysines on histone N-terminal tails and on other proteins. Pharmacological inhibition of mSWI/SNF bromodomain function using the selective inhibitor PFI-3 reduced differentiation, decreased expression of myogenic genes, and increased the expression of cell cycle-related genes, and the number of cells that remained in the cell cycle. Knockdown of BAF180 had no effect on differentiation, suggesting that only the BRG1 and BRM bromodomains contributed to differentiation. Comparison with existing gene expression data from myoblasts subjected to knockdown of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. ChIP analysis revealed decreased BRG1 and BRM binding to target gene promoters, indicating that the BRG1 and BRM bromodomains promote chromatin binding. Thus mSWI/SNF ATPase bromodomains contribute to cell cycle exit, to skeletal muscle-specific gene expression, and to stable promoter binding by the mSWI/SNF ATPases.

2019 ◽  
Vol 39 (19) ◽  
Author(s):  
Hanna Witwicka ◽  
Jumpei Nogami ◽  
Sabriya A. Syed ◽  
Kazumitsu Maehara ◽  
Teresita Padilla-Benavides ◽  
...  

ABSTRACT Calcineurin (Cn) is a calcium-activated serine/threonine protein phosphatase that is broadly implicated in diverse cellular processes, including the regulation of gene expression. During skeletal muscle differentiation, Cn activates the nuclear factor of activated T-cell (NFAT) transcription factor but also promotes differentiation by counteracting the negative influences of protein kinase C beta (PKCβ) via dephosphorylation and activation of Brg1, an enzymatic subunit of the mammalian SWI/SNF ATP-dependent chromatin remodeling enzyme. Here we identified four major temporal patterns of Cn-dependent gene expression in differentiating myoblasts and determined that Cn is broadly required for the activation of the myogenic gene expression program. Mechanistically, Cn promotes gene expression through direct binding to myogenic promoter sequences and facilitating the binding of Brg1, other SWI/SNF subunit proteins, and MyoD, a critical lineage determinant for skeletal muscle differentiation. We conclude that the Cn phosphatase directly impacts the expression of myogenic genes by promoting ATP-dependent chromatin remodeling and formation of transcription-competent promoters.


2000 ◽  
Vol 14 (10) ◽  
pp. 1209-1228 ◽  
Author(s):  
Shen Liang Chen ◽  
Dennis H. Dowhan ◽  
Brett M. Hosking ◽  
George E.O. Muscat

Nuclear receptor-mediated activation of transcription involves coactivation by cofactors collectively denoted the steroid receptor coactivators (SRCs). The process also involves the subsequent recruitment of p300/CBP and PCAF to a complex that synergistically regulates transcription and remodels the chromatin. PCAF and p300 have also been demonstrated to function as critical coactivators for the muscle-specific basic helix–loop–helix (bHLH) protein MyoD during myogenic commitment. Skeletal muscle differentiation and the activation of muscle-specific gene expression is dependent on the concerted action of another bHLH factor, myogenin, and the MADS protein, MEF-2, which function in a cooperative manner. We examined the functional role of one SRC, GRIP-1, in muscle differentiation, an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding GRIP-1 is expressed in proliferating myoblasts and post-mitotic differentiated myotubes, and that protein levels increase during differentiation. Exogenous/ectopic expression studies with GRIP-1 sense and antisense vectors in myogenic C2C12 cells demonstrated that this SRC is necessary for (1) induction/activation of myogenin, MEF-2, and the crucial cell cycle regulator, p21, and (2) contractile protein expression and myotube formation. Furthermore, we demonstrate that the SRC GRIP-1 coactivates MEF-2C-mediated transcription. GRIP-1 also coactivates the synergistic transactivation of E box-dependent transcription by myogenin and MEF-2C. GST-pulldowns, mammalian two-hybrid analysis, and immunoprecipitation demonstrate that the mechanism involves direct interactions between MEF-2C and GRIP-1 and is associated with the ability of the SRC to interact with the MADS domain of MEF-2C. The HLH region of myogenin mediates the direct interaction of myogenin and GRIP-1. Interestingly, interaction with myogenic factors is mediated by two regions of GRIP-1, an amino-terminal bHLH–PAS region and the carboxy-terminal region between amino acids 1158 and 1423 (which encodes an activation domain, has HAT activity, and interacts with the coactivator-associated arginine methyltransferase). This work demonstrates that GRIP-1 potentiates skeletal muscle differentiation by acting as a critical coactivator for MEF-2C-mediated transactivation and is the first study to ascribe a function to the amino-terminal bHLH–PAS region of SRCs.


2009 ◽  
Vol 284 (24) ◽  
pp. 16308-16316 ◽  
Author(s):  
Ju-Ryoung Kim ◽  
Hae Jin Kee ◽  
Ji-Young Kim ◽  
Hosouk Joung ◽  
Kwang-Il Nam ◽  
...  

Skeletal muscle differentiation is well regulated by a series of transcription factors. We reported previously that enhancer of polycomb1 (Epc1), a chromatin protein, can modulate skeletal muscle differentiation, although the mechanisms of this action have yet to be defined. Here we report that Epc1 recruits both serum response factor (SRF) and p300 to induce skeletal muscle differentiation. Epc1 interacted physically with SRF. Transfection of Epc1 to myoblast cells potentiated the SRF-induced expression of skeletal muscle-specific genes as well as multinucleation. Proximal CArG box in the skeletal α-actin promoter was responsible for the synergistic activation of the promoter-luciferase. Epc1 knockdown caused a decrease in the acetylation of histones associated with serum response element (SRE) of the skeletal α-actin promoter. The Epc1·SRF complex bound to the SRE, and the knockdown of Epc1 resulted in a decrease in SRF binding to the skeletal α-actin promoter. Epc1 recruited histone acetyltransferase activity, which was potentiated by cotransfection with p300 but abolished by si-p300. Epc1 directly bound to p300 in myoblast cells. Epc1+/− mice showed distortion of skeletal α-actin, and the isolated myoblasts from the mice had impaired muscle differentiation. These results suggest that Epc1 is required for skeletal muscle differentiation by recruiting both SRF and p300 to the SRE of muscle-specific gene promoters.


1999 ◽  
Vol 9 (9) ◽  
pp. 449-459 ◽  
Author(s):  
Bennett G. Novitch ◽  
Douglas B. Spicer ◽  
Paul S. Kim ◽  
Wang L. Cheung ◽  
Andrew B. Lassar

2019 ◽  
Author(s):  
Hanna Witwicka ◽  
Jumpei Nogami ◽  
Sabriya A. Syed ◽  
Kazumitsu Maehara ◽  
Teresita Padilla-Benavides ◽  
...  

ABSTRACTCalcineurin (Cn) is a calcium-activated serine/threonine protein phosphatase that is broadly implicated in diverse cellular processes, including the regulation of gene expression. During skeletal muscle differentiation, Cn activates the NFAT transcription factor but also promotes differentiation by counteracting the negative influences of protein kinase C beta (PKCβ) via dephosphorylation and activation of BRG1, an enzymatic subunit of the mammalian SWI/SNF ATP-dependent chromatin remodeling enzyme. Here we identified four major temporal patterns of Cn-dependent gene expression in differentiating myoblasts and determined that Cn is broadly required for the activation of the myogenic gene expression program. Mechanistically, Cn promotes gene expression through direct binding to myogenic promoter sequences and facilitating the binding of BRG1, other SWI/SNF subunit proteins, and MyoD, a critical lineage determinant for skeletal muscle differentiation. We conclude that the Cn phosphatase directly impacts the expression of myogenic genes by promoting ATP-dependent chromatin remodeling and formation of transcription-competent promoters.


2012 ◽  
Vol 56 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Leonie Du Puy ◽  
Abdelaziz Beqqali ◽  
Helena T.A. Van Tol ◽  
Jantine Monshouwer-Kloots ◽  
Robert Passier ◽  
...  

2006 ◽  
Vol 175 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Miriam I. Rosenberg ◽  
Sara A. Georges ◽  
Amy Asawachaicharn ◽  
Erwin Analau ◽  
Stephen J. Tapscott

Terminal differentiation of distinct cell types requires the transcriptional activation of differentiation-specific genes and the suppression of genes associated with the precursor cell. For example, the expression of utrophin (Utrn) is suppressed during skeletal muscle differentiation, and it is replaced at the sarcolemma by the related dystrophin protein. The MyoD transcription factor directly activates the expression of a large number of skeletal muscle genes, but also suppresses the expression of many genes. To characterize a mechanism of MyoD-mediated suppression of gene expression, we investigated two genes that are suppressed in fibroblasts converted to skeletal muscle by MyoD, follistatin-like 1 (Fstl1) and Utrn. MyoD directly activates the expression of a muscle-specific microRNA (miRNA), miR-206, which targets sequences in the Fstl1 and Utrn RNA, and these sequences are sufficient to suppress gene expression in the presence of miR-206. These findings demonstrate that MyoD, in addition to activating muscle-specific genes, induces miRNAs that repress gene expression during skeletal muscle differentiation.


Sign in / Sign up

Export Citation Format

Share Document