scholarly journals Mis-splicing of Mdm2 leads to Increased P53-Activity and Craniofacial Defects in a MFDM Eftud2 Mutant Mouse Model

2020 ◽  
Author(s):  
Marie-Claude Beauchamp ◽  
Anissa Djedid ◽  
Eric Bareke ◽  
Fjodor Merkuri ◽  
Rachel Aber ◽  
...  

SummaryEFTUD2, a GTPase and core component of the splicesome, is mutated in patients with mandibulofacial dysostosis with microcephaly (MFDM). We generated a mutant mouse line with conditional mutation in Eftud2 and used Wnt1-Cre2 to delete it in neural crest cells. Homozygous deletion of Eftud2 leads to neural crest cell death and malformations in the brain and craniofacial region of embryos. RNAseq analysis of embryonic mutant heads revealed a significant increase in exon skipping, in retained introns and enriched levels of Mdm2 transcripts lacking exon 3. Mutants also had increased nuclear P53, higher expression of P53-target genes, and increased cell death. Their craniofacial development was significantly improved when treated with Pifithrin-α, an inihibitor of P53. We propose that craniofacial defects caused by mutations of EFTUD2 are a result of mis-splicing of Mdm2 and P53-associated cell death. Hence, drugs that reduce P53 activity may help prevent craniofacial defects associated with spliceosomopathies.

2021 ◽  
Author(s):  
Marie-Claude Beauchamp ◽  
Anissa Djedid ◽  
Eric Bareke ◽  
Fjodor Merkuri ◽  
Rachel Aber ◽  
...  

Abstract EFTUD2 is mutated in patients with mandibulofacial dysostosis with microcephaly (MFDM). We generated a mutant mouse line with conditional mutation in Eftud2 and used Wnt1-Cre2 to delete it in neural crest cells. Homozygous deletion of Eftud2 causes brain and craniofacial malformations, affecting the same precursors as in MFDM patients. RNAseq analysis of embryonic heads revealed a significant increase in exon skipping and increased levels of an alternatively spliced Mdm2 transcript lacking exon 3. Exon skipping in Mdm2 was also increased in O9-1 mouse neural crest cells after siRNA knock-down of Eftud2 and in MFDM patient cells. Moreover, we found increased nuclear P53, higher expression of P53-target genes and increased cell death. Finally, overactivation of the P53 pathway in Eftud2 knockdown cells was attenuated by overexpression of non-spliced Mdm2, and craniofacial development was improved when Eftud2-mutant embryos were treated with Pifithrin-α, an inhibitor of P53. Thus, our work indicates that the P53-pathway can be targeted to prevent craniofacial abnormalities and shows a previously unknown role for alternative splicing of Mdm2 in the etiology of MFDM.


genesis ◽  
2014 ◽  
Vol 52 (7) ◽  
pp. 687-694 ◽  
Author(s):  
Terence Gordon Smith ◽  
Steve Laval ◽  
Fangli Chen ◽  
Matthew James Rock ◽  
Tom Strachan ◽  
...  

2020 ◽  
pp. 002203452096910
Author(s):  
S. Dash ◽  
S. Bhatt ◽  
K.T. Falcon ◽  
L.L. Sandell ◽  
P.A. Trainor

The etiology and pathogenesis of craniofacial birth defects are multifactorial and include both genetic and environmental factors. Despite the identification of numerous genes associated with congenital craniofacial anomalies, our understanding of their etiology remains incomplete, and many affected individuals have an unknown genetic diagnosis. Here, we show that conditional loss of a Mediator complex subunit protein, Med23 in mouse neural crest cells ( Med23 fx/fx; Wnt1-Cre), results in micrognathia, glossoptosis, and cleft palate, mimicking the phenotype of Pierre Robin sequence. Sox9 messenger RNA and protein levels are both upregulated in neural crest cell–derived mesenchyme surrounding Meckel’s cartilage and in the palatal shelves in Med23 fx/fx; Wnt1-Cre mutant embryos compared to controls. Consistent with these observations, we demonstrate that Med23 binds to the promoter region of Sox9 and represses Sox9 expression in vitro. Interestingly, Sox9 binding to β-catenin is enhanced in Med23 fx/fx; Wnt1-Cre mutant embryos, which, together with downregulation of Col2a1 and Wnt signaling target genes, results in decreased proliferation and altered jaw skeletal differentiation and cleft palate. Altogether, our data support a cell-autonomous requirement for Med23 in neural crest cells, potentially linking the global transcription machinery through Med23 to the etiology and pathogenesis of craniofacial anomalies such as micrognathia and cleft palate.


2018 ◽  
Vol 55 (6) ◽  
pp. 865-870
Author(s):  
Paige Miranda ◽  
Badam Enkhmandakh ◽  
Dashzeveg Bayarsaihan

Objectives: The aim of this study is to define the candidate target genes for TFII-I and AP2α regulation in neural crest progenitor cells. Design: The GTF2I and GTF2IRD1 genes encoding the TFII-I family of transcription factors are prime candidates for the Williams-Beuren syndrome, a complex multisystem disorder characterized by craniofacial, skeletal, and neurocognitive deficiencies. AP2α, a product of the TFAP2A gene, is a master regulator of neural crest cell lineage. Mutations in TFAP2A cause branchio-oculo-facial syndrome characterized by dysmorphic facial features and orofacial clefts. In this study, we examined the genome-wide promoter occupancy of TFII-I and AP2α in neural crest progenitor cells derived from in vitro-differentiated human embryonic stem cells. Results: Our study revealed that TFII-I and AP2α co-occupy a selective set of genes that control the specification of neural crest cells. Conclusions: The data suggest that TFII-I and AP2α may coordinately control the expression of genes encoding chromatin-modifying proteins, epigenetic enzymes, transcription factors, and signaling proteins.


2010 ◽  
Vol 344 (1) ◽  
pp. 467
Author(s):  
Samantha Brugmann ◽  
Nancy C. Allen ◽  
Aaron W. James ◽  
Zesemayat Mekonnen ◽  
Elena Madan ◽  
...  

2019 ◽  
Vol 29 (2) ◽  
pp. 305-319 ◽  
Author(s):  
Janina Schwenty-Lara ◽  
Denise Nehl ◽  
Annette Borchers

Abstract Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.


2019 ◽  
Author(s):  
Lomeli Shull ◽  
Rwik Sen ◽  
Johannes Menzel ◽  
Kristin Bruk Artinger

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Sign in / Sign up

Export Citation Format

Share Document