scholarly journals Estimation of the Basic Reproduction Number of SARS-CoV-2 in Bangladesh Using Exponential Growth Method

Author(s):  
Riaz Mahmud ◽  
H. M. Abrar Fahim Patwari

Objectives: In December 2019, a novel coronavirus (SARS-CoV-2) outbreak emerged in Wuhan, Hubei Province, China. Soon, it has spread out across the world and become an ongoing pandemic. In Bangladesh, the first case of novel coronavirus (SARS-CoV-2) was detected on March 8, 2020. Since then, not many significant studies have been conducted to understand the transmission dynamics of novel coronavirus (SARS-CoV-2) in Bangladesh. In this study, we estimated the basic reproduction number R0 of novel coronavirus (SARS-CoV-2) in Bangladesh. Methods: The data of daily confirmed cases of novel coronavirus (SARS-CoV-2) in Bangladesh and the reported values of generation time of novel coronavirus (SARS-CoV-2) for Singapore and Tianjin, China, were collected. We calculated the basic reproduction number R0 by applying the exponential growth (EG) method. Epidemic data of the first 76 days and different values of generation time were used for the calculation. Results: The basic reproduction number R0 of novel coronavirus (SARS-CoV-2) in Bangladesh is estimated to be 2.66 [95% CI: 2.58-2.75], optimized R0 is 2.78 [95% CI: 2.69-2.88] using generation time 5.20 with a standard deviation of 1.72 for Singapore. Using generation time 3.95 with a standard deviation of 1.51 for Tianjin, China, R0 is estimated to be 2.15 [95% CI: 2.09-2.20], optimized R0 is 2.22 [95% CI: 2.16-2.29]. Conclusions: The calculated basic reproduction number R0 of novel coronavirus (SARS-CoV-2) in Bangladesh is significantly higher than 1, which indicates its high transmissibility and contagiousness.

Author(s):  
Shi Zhao ◽  
Qianyin Lin ◽  
Jinjun Ran ◽  
Salihu S Musa ◽  
Guangpu Yang ◽  
...  

AbstractBackgroundsAn ongoing outbreak of a novel coronavirus (2019-nCoV) pneumonia hit a major city of China, Wuhan, December 2019 and subsequently reached other provinces/regions of China and countries. We present estimates of the basic reproduction number, R0, of 2019-nCoV in the early phase of the outbreak.MethodsAccounting for the impact of the variations in disease reporting rate, we modelled the epidemic curve of 2019-nCoV cases time series, in mainland China from January 10 to January 24, 2020, through the exponential growth. With the estimated intrinsic growth rate (γ), we estimated R0 by using the serial intervals (SI) of two other well-known coronavirus diseases, MERS and SARS, as approximations for the true unknown SI.FindingsThe early outbreak data largely follows the exponential growth. We estimated that the mean R0 ranges from 2.24 (95%CI: 1.96-2.55) to 3.58 (95%CI: 2.89-4.39) associated with 8-fold to 2-fold increase in the reporting rate. We demonstrated that changes in reporting rate substantially affect estimates of R0.ConclusionThe mean estimate of R0 for the 2019-nCoV ranges from 2.24 to 3.58, and significantly larger than 1. Our findings indicate the potential of 2019-nCoV to cause outbreaks.


2020 ◽  
Author(s):  
Md. Hasan ◽  
Akhtar Hossain ◽  
Wasimul Bari ◽  
Syed Shariful Islam

Abstract BackgroundThe outbreak of novel coronavirus disease (COVID-19), started from Wuhan, China, at the end of December 2019, hits almost the entire world. In Bangladesh, the first case was officially reported on March 8, 2020. We estimated the basic reproductive number, R0, of COVID-19 for Bangladesh using the first 65-day data of the outbreak.MethodsWith time-varying disease reporting rate, epidemic curves were estimated using the exponential growth model utilizing daily COVID-19 diagnosis data in Bangladesh from March 8 to May 11, 2020. We estimated R0 using the estimated intrinsic growth rate (γ). Serial intervals (SI) have been used from two well-known coronaviruses’ outbreaks, SARS and MERS; and the early estimate of SI of COVID-19 in Wuhan, China.ResultsThe COVID-19 epidemic in Bangladesh followed an exponential growth model. We found the R0 to be 1.84 [95% CI: 1.82–1.86], 1.82 [95% CI: 1.81–1.84], and 1.94 [95% CI: 1.92–1.96], for MERS, COVID-19, and SARS SI respectively without adjusting reporting rate. With the adjusted reporting rate, R0 reduced to 1.63 [95% CI: 1.62–1.65], 1.62 [95% CI: 1.61–1.64], and 1.71 [95% CI: 1.70–1.73] for a five-fold increase. Inverse association between the reporting rate and the basic reproduction number was observed.ConclusionThe R0 was found to be 1.87 for existing cases and was reduced to 1.65 for the five-fold increase of the early reporting rate. Findings suggest a continued COVID-19 outbreak in Bangladesh and immediate steps need to be taken to control.


Author(s):  
Salihu S Musa ◽  
Shi Zhao ◽  
Maggie H Wang ◽  
Abdurrazaq G Habib ◽  
Umar T Mustapha ◽  
...  

Abstract Since the first case of coronavirus disease 2019 (COVID-19) was detected on February 14, 2020, the cumulative confirmations reached 834 including 17 deaths by March 19, 2020. We analyzed the initial phase of the epidemic of COVID-19 in Africa between 1 March and 19 March 2020, by using the simple exponential growth model. We estimated the exponential growth rate as 0.22 per day (95%CI: 0.20 – 0.24), and the basic reproduction number to be 2.37 (95%CI: 2.22-2.51) based on the assumption that the exponential growth starting from 1 March, 2020. Our estimates should be useful in preparedness planning.


Author(s):  
Zian Zhuang ◽  
Shi Zhao ◽  
Qianying Lin ◽  
Peihua Cao ◽  
Yijun Lou ◽  
...  

AbstractThe novel coronavirus disease 2019 (COVID-19) outbreak in Republic of Korea has caused 3736 cases and 18 deaths by 1 March 2020. We modeled the transmission process in Republic of Korea with a stochastic model and estimated the basic reproduction number R0 as 2.6 (95%CI: 2.3-2.9) and 3.2 (95%CI: 2.9-3.5), under the assumption that the exponential growth starting 31 January and 5 February, 2020, respectively. Estimates of dispersion term (k) were larger than 10 significantly, which implies few super-spreading events..


Author(s):  
Kenji Mizumoto ◽  
Katsushi Kagaya ◽  
Gerardo Chowell

AbstractBackgroundSince the first cluster of cases was identified in Wuhan City, China, in December, 2019, coronavirus disease 2019 (COVID-19) rapidly spread around the world. Despite the scarcity of publicly available data, scientists around the world have made strides in estimating the magnitude of the epidemic, the basic reproduction number, and transmission patterns. Accumulating evidence suggests that a substantial fraction of the infected individuals with the novel coronavirus show little if any symptoms, which highlights the need to reassess the transmission potential of this emerging disease. In this study, we derive estimates of the transmissibility and virulence of COVID-19 in Wuhan City, China, by reconstructing the underlying transmission dynamics using multiple data sources.MethodsWe employ statistical methods and publicly available epidemiological datasets to jointly derive estimates of transmissibility and severity associated with the novel coronavirus. For this purpose, the daily series of laboratory–confirmed COVID-19 cases and deaths in Wuhan City together with epidemiological data of Japanese repatriated from Wuhan City on board government–chartered flights were integrated into our analysis.ResultsOur posterior estimates of basic reproduction number (R) in Wuhan City, China in 2019–2020 reached values at 3.49 (95%CrI: 3.39–3.62) with a mean serial interval of 6.0 days, and the enhanced public health intervention after January 23rd in 2020 was associated with a significantly reduced R at 0.84 (95%CrI: 0.81–0.88), with the total number of infections (i.e. cumulative infections) estimated at 1906634 (95%CrI: 1373500–2651124) in Wuhan City, elevating the overall proportion of infected individuals to 19.1% (95%CrI: 13.5–26.6%). We also estimated the most recent crude infection fatality ratio (IFR) and time–delay adjusted IFR at 0.04% (95% CrI: 0.03%–0.06%) and 0.12% (95%CrI: 0.08–0.17%), respectively, estimates that are several orders of magnitude smaller than the crude CFR estimated at 4.06%ConclusionsWe have estimated key epidemiological parameters of the transmissibility and virulence of COVID-19 in Wuhan, China during January-February, 2020 using an ecological modelling approach. The power of this approach lies in the ability to infer epidemiological parameters with quantified uncertainty from partial observations collected by surveillance systems.


2020 ◽  
Vol 148 ◽  
Author(s):  
A. Khosravi ◽  
R. Chaman ◽  
M. Rohani-Rasaf ◽  
F. Zare ◽  
S. Mehravaran ◽  
...  

Abstract The aim of this study was to estimate the basic reproduction number (R0) of COVID-19 in the early stage of the epidemic and predict the expected number of new cases in Shahroud in Northeastern Iran. The R0 of COVID-19 was estimated using the serial interval distribution and the number of incidence cases. The 30-day probable incidence and cumulative incidence were predicted using the assumption that daily incidence follows a Poisson distribution determined by daily infectiousness. Data analysis was done using ‘earlyR’ and ‘projections’ packages in R software. The maximum-likelihood value of R0 was 2.7 (95% confidence interval (CI): 2.1−3.4) for the COVID-19 epidemic in the early 14 days and decreased to 1.13 (95% CI 1.03–1.25) by the end of day 42. The expected average number of new cases in Shahroud was 9.0 ± 3.8 cases/day, which means an estimated total of 271 (95% CI: 178–383) new cases for the period between 02 April to 03 May 2020. By day 67 (27 April), the effective reproduction number (Rt), which had a descending trend and was around 1, reduced to 0.70. Based on the Rt for the last 21 days (days 46–67 of the epidemic), the prediction for 27 April to 26 May is a mean daily cases of 2.9 ± 2.0 with 87 (48–136) new cases. In order to maintain R below 1, we strongly recommend enforcing and continuing the current preventive measures, restricting travel and providing screening tests for a larger proportion of the population.


Sign in / Sign up

Export Citation Format

Share Document