scholarly journals Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus in vitro

Author(s):  
Bruno Frank ◽  
Carina Conzelmann ◽  
Tatjana Weil ◽  
Rüdiger Groß ◽  
Peggy Jungke ◽  
...  

AbstractMany plant juices, extracts and teas have been shown to possess antiviral activity. We here analyzed the virucidal activity of black chokeberry (Aronia melanocarpa), pomegranate (Punica granatum), and elderberry (Sambucus nigra) juice, as well as green tea (Camellia sinensis) against different respiratory viruses. We found that all tested plant derived products effectively inactivated influenza virus, whereas only chokeberry juice diminished SARS-CoV-2 and vaccinia virus infectivity. None of the products inactivated non-enveloped human adenovirus type 5. Thus, black chokeberry juice exerts virucidal activity against different enveloped viral pathogens under in vitro conditions. Whether application of virucidal juices or green tea as oral rinses may lower viral loads in the oral cavity in vivo remains to be evaluated.

2021 ◽  
Vol 14 (4) ◽  
pp. 294
Author(s):  
Eric G. Romanowski ◽  
Islam T. M. Hussein ◽  
Steven C. Cardinale ◽  
Michelle M. Butler ◽  
Lucas R. Morin ◽  
...  

Presently, there is no FDA- or EMA-approved antiviral for the treatment of human adenovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV) against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective concentrations (EC50) of FCV and cidofovir (CDV) were determined for several ocular HAdV types using standard plaque reduction assays. Rabbits were topically inoculated in both eyes with HAdV5. On day 1, the rabbits were divided into four topical treatment groups: (1) 0.5% FCV 4x/day × 10 d; (2) 0.1% FCV 4x/day × 10 d; (3) 0.5% CDV 2x/day × 7 d; (4) vehicle 4x/day × 10 d. Eyes were cultured for virus on days 0, 1, 3, 4, 5, 7, 9, 11, and 14. The resulting viral eye titers were determined using standard plaque assays. The mean in vitro EC50 for FCV against tested HAdV types ranged from 0.50 to 4.68 µM, whereas those treated with CDV ranged from 0.49 to 30.3 µM. In vivo, compared to vehicle, 0.5% FCV, 0.1% FCV, and 0.5% CDV produced lower eye titers, fewer numbers of positive eye cultures, and shorter durations of eye infection. FCV demonstrated anti-adenovirus activity in vitro and in vivo.


2020 ◽  
Vol 30 (2) ◽  
pp. 172-177 ◽  
Author(s):  
Minjee Kim ◽  
Dinh-Van Nguyen ◽  
Yoonki Heo ◽  
Ki Hoon Park ◽  
Hyun-Dong Paik ◽  
...  

2021 ◽  
Author(s):  
Valeria Cagno1 ◽  
Chiara Medaglia ◽  
Andreas Cerny ◽  
Thomas Cerny ◽  
Arnaud Zwygart ◽  
...  

Abstract Methylene blue is an FDA (food and drug administration) and EMA (european medicines agency) approved drug with an excellent safety profile. It displays broad-spectrum virucidal activity in the presence of UV light and has been shown to be effective in inactivating various viruses in blood products prior to transfusions. In addition, its use has been validated for methemoglobinemia and malaria treatment. In this study, we first evaluated the virucidal activity of methylene blue against Influenza Virus H1N1 upon different incubation times and in the presence or absence of light activation, and then against SARS-CoV-2. We further assessed the therapeutic activity of methylene blue by administering it to cells previously infected with SARS-CoV-2. Finally, we examined the effect of co-administration of the drug together with immune serum. Our findings reveal that methylene blue displays virucidal preventive or therapeutic activity against Influenza Virus H1N1 and SARS-CoV-2 at low micromolar concentrations and in the absence of UV activation. We also confirm that MB antiviral activity is based on several mechanisms of action as the degradation of genomic RNA is only observed in the presence of light and after long exposure. Our work supports the interest of testing methylene blue in clinical studies to confirm a preventive or therapeutic efficacy against both Influenza Virus H1N1 and SARS-CoV-2 infections.


2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valeria Cagno ◽  
Chiara Medaglia ◽  
Andreas Cerny ◽  
Thomas Cerny ◽  
Arnaud Charles-Antoine Zwygart ◽  
...  

AbstractMethylene blue is an FDA (Food and Drug Administration) and EMA (European Medicines Agency) approved drug with an excellent safety profile. It displays broad-spectrum virucidal activity in the presence of UV light and has been shown to be effective in inactivating various viruses in blood products prior to transfusions. In addition, its use has been validated for methemoglobinemia and malaria treatment. In this study, we first evaluated the virucidal activity of methylene blue against influenza virus H1N1 upon different incubation times and in the presence or absence of light activation, and then against SARS-CoV-2. We further assessed the therapeutic activity of methylene blue by administering it to cells previously infected with SARS-CoV-2. Finally, we examined the effect of co-administration of the drug together with immune serum. Our findings reveal that methylene blue displays virucidal preventive or therapeutic activity against influenza virus H1N1 and SARS-CoV-2 at low micromolar concentrations and in the absence of UV-activation. We also confirm that MB antiviral activity is based on several mechanisms of action as the extent of genomic RNA degradation is higher in presence of light and after long exposure. Our work supports the interest of testing methylene blue in clinical studies to confirm a preventive and/or therapeutic efficacy against both influenza virus H1N1 and SARS-CoV-2 infections.


2003 ◽  
Vol 47 (9) ◽  
pp. 2914-2921 ◽  
Author(s):  
Masako Unoshima ◽  
Hideo Iwasaka ◽  
Junko Eto ◽  
Yoshiko Takita-Sonoda ◽  
Takayuki Noguchi ◽  
...  

ABSTRACT A cyclic polyisoprenoid compound, geranylgeranylacetone (GGA), has been used as antiulcer drug. GGA is also a potent inducer of heat shock proteins (HSPs). HSPs are considered to induce an antiviral effect; however, the detailed mechanism is unknown. To determine whether GGA might show antiviral activity and what the mechanism is, the effect of GGA against influenza virus (strain PR8) infection in vivo and in vitro was investigated. The results demonstrated that GGA treatment strongly suppressed the deleterious consequences of PR8 replication and was accompanied by an increase in HSP70 gene expression in mice. Results from in vitro analyses demonstrated that GGA significantly inhibited the synthesis of PR8-associated proteins and prominently enhanced expression of human myxovirus resistance 1 (MxA) followed by increased HSP70 transcription. Moreover, GGA augmented the expression of an interferon-inducible double-strand RNA-activated protein kinase (PKR) gene and promoted PKR autophosphorylation and concomitantly α subunit of eukaryotic initiation factor 2 phosphorylation during PR8 infection. It is proposed that GGA-induced HSP70 has potent antiviral activity by enhancement of antiviral factors and can clinically achieve protection from influenza virus infection.


Sign in / Sign up

Export Citation Format

Share Document