scholarly journals Natural isotope correction improves analysis of protein modification dynamics

2020 ◽  
Author(s):  
Jörn Dietze ◽  
Alienke van Pijkeren ◽  
Mathias Ziegler ◽  
Marcel Kwiatkowski ◽  
Ines Heiland

AbstractStable isotope labelling in combination with high resolution mass spectrometry approaches are increasingly used to analyse both metabolite and protein modification dynamics. To enable correct estimation of the resulting dynamics it is critical to correct the measured values for naturally occurring stable isotopes, a process commonly called isotopologue correction or deconvolution. While the importance of isotopologue correction is well recognized in metabolomics, it has received far less attention in proteomics approaches. Although several tools exist that enable isotopologue correction of mass spectrometry data, none of them is universally applicable for all potential experimental approaches. We here present PICor which has been streamlined for multiple isotope labelling isotopologue correction in proteomics or metabolomics approaches. We demonstrate the importance for accurate measurement of the dynamics of protein modifications, such as histone acetylation.

Author(s):  
Jörn Dietze ◽  
Alienke van Pijkeren ◽  
Anna-Sophia Egger ◽  
Mathias Ziegler ◽  
Marcel Kwiatkowski ◽  
...  

AbstractStable isotope labelling in combination with high-resolution mass spectrometry approaches are increasingly used to analyze both metabolite and protein modification dynamics. To enable correct estimation of the resulting dynamics, it is critical to correct the measured values for naturally occurring stable isotopes, a process commonly called isotopologue correction or deconvolution. While the importance of isotopologue correction is well recognized in metabolomics, it has received far less attention in proteomics approaches. Although several tools exist that enable isotopologue correction of mass spectrometry data, the majority is tailored for the analysis of low molecular weight metabolites. We here present PICor which has been developed for isotopologue correction of complex isotope labelling experiments in proteomics or metabolomics and demonstrate the importance of appropriate correction for accurate determination of protein modifications dynamics, using histone acetylation as an example.


2008 ◽  
Vol 7 (1) ◽  
pp. 276-285 ◽  
Author(s):  
Dale F. McLerran ◽  
Ziding Feng ◽  
O. John Semmes ◽  
Lisa Cazares ◽  
Timothy W. Randolph

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 151 ◽  
Author(s):  
Alexander Triebl ◽  
Markus Wenk

Over the last two decades, lipids have come to be understood as far more than merely components of cellular membranes and forms of energy storage, and are now also being implicated to play important roles in a variety of diseases, with lipid biomarker research one of the most widespread applications of lipidomic techniques both in research and in clinical settings. Stable isotope labelling has become a staple technique in the analysis of small molecule metabolism and dynamics, as it is the only experimental setup by which biosynthesis, remodelling and degradation of biomolecules can be directly measured. Using state-of-the-art analytical technologies such as chromatography-coupled high resolution tandem mass spectrometry, the stable isotope label can be precisely localized and quantified within the biomolecules. The application of stable isotope labelling to lipidomics is however complicated by the diversity of lipids and the complexity of the necessary data analysis. This article discusses key experimental aspects of stable isotope labelling in the field of mass spectrometry-based lipidomics, summarizes current applications and provides an outlook on future developments and potential.


Sign in / Sign up

Export Citation Format

Share Document