scholarly journals WNT responsive SUMOylation of ZIC5 exerts multiple effects on transcription to promote murine neural crest cell development

2020 ◽  
Author(s):  
Radiya G. Ali ◽  
Helen M. Bellchambers ◽  
Nicholas Warr ◽  
Jehangir N. Ahmed ◽  
Kristen S. Barratt ◽  
...  

AbstractZinc finger of the cerebellum (Zic) proteins act as classical transcription factors to promote transcription of the Foxd3 gene during neural crest cell specification. Additionally, they can act as co-factors that bind TCF molecules to repress WNT/β-catenin dependent transcription without contacting DNA. Here, we show ZIC activity at the neural plate border is influenced by WNT-dependent SUMOylation. In a high WNT environment, a lysine within the highly conserved ZF-NC domain of ZIC5 is SUMOylated, which decreases formation of the TCF/ZIC co-repressor complex and shifts the balance towards transcription factor function. The modification is critical in vivo, as a ZIC5 SUMO-incompetent mouse strain exhibits neural crest specification defects. This work reveals the function of the ZIC ZF-NC domain, provides in vivo validation of target protein SUMOylation, and demonstrates that WNT/β-catenin signalling directs transcription at non-TCF DNA binding sites. Furthermore, it can explain how WNT signals convert a broad domain of Zic ectodermal expression into a restricted domain of neural crest cell specification.

2021 ◽  
Author(s):  
Radiya G. Ali ◽  
Helen M. Bellchambers ◽  
Nicholas Warr ◽  
Jehangir N. Ahmed ◽  
Kristen S. Barratt ◽  
...  

Zinc finger of the cerebellum (Zic) proteins act as classical transcription factors to promote transcription of the Foxd3 gene during neural crest cell specification. Additionally, they can act as co-factors that bind TCF molecules to repress WNT/β-catenin-dependent transcription without contacting DNA. Here, we show ZIC activity at the neural plate border is influenced by WNT-dependent SUMOylation. In a high WNT environment, a lysine within the highly conserved ZF-NC domain of ZIC5 is SUMOylated, which decreases formation of the TCF/ZIC co-repressor complex and shifts the balance towards transcription factor function. The modification is critical in vivo, as a ZIC5 SUMO-incompetent mouse strain exhibits neural crest specification defects. This work reveals the function of the ZIC ZF-NC domain, provides in vivo validation of target protein SUMOylation, and demonstrates that WNT/β-catenin signaling directs transcription at non-TCF DNA binding sites. Furthermore, it can explain how WNT signals convert a broad domain of Zic ectodermal expression into a restricted domain of neural crest cell specification.


Author(s):  
Manuel Rocha ◽  
Elaine Kushkowski ◽  
Ruby Schnirman ◽  
Clare Booth ◽  
Noor Singh ◽  
...  

2018 ◽  
Vol 97 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Monica Akula ◽  
Jeong Won Park ◽  
Judith A. West-Mays

2003 ◽  
Vol 229 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Brent J. Tierney ◽  
Trang Ho ◽  
Mark V. Reedy ◽  
Philip R. Brauer

1992 ◽  
Vol 117 (2) ◽  
pp. 369-382 ◽  
Author(s):  
HJ Hathaway ◽  
BD Shur

Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.


Sign in / Sign up

Export Citation Format

Share Document