scholarly journals Homocysteine inhibits cardiac neural crest cell formation and morphogenesis in vivo

2003 ◽  
Vol 229 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Brent J. Tierney ◽  
Trang Ho ◽  
Mark V. Reedy ◽  
Philip R. Brauer
2018 ◽  
Vol 247 (12) ◽  
pp. 1286-1296 ◽  
Author(s):  
Kimberly E. Inman ◽  
Carlo Donato Caiaffa ◽  
Kristin R. Melton ◽  
Lisa L. Sandell ◽  
Annita Achilleos ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 29 (3) ◽  
pp. 603-616.e5
Author(s):  
Hiroyuki N. Arai ◽  
Fuminori Sato ◽  
Takuya Yamamoto ◽  
Knut Woltjen ◽  
Hiroshi Kiyonari ◽  
...  

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Philip R Brauer ◽  
William G Stetler‐Stevenson ◽  
Lan Uyen Tran ◽  
Mark V Reedy

1992 ◽  
Vol 117 (2) ◽  
pp. 369-382 ◽  
Author(s):  
HJ Hathaway ◽  
BD Shur

Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.


Sign in / Sign up

Export Citation Format

Share Document