transplantation experiments
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 2)

Development ◽  
2021 ◽  
Vol 148 (21) ◽  
Author(s):  
Brittany C. Collins ◽  
Gabrielle Kardon

ABSTRACT Vertebrate skeletal muscle is composed of multinucleate myofibers that are surrounded by muscle connective tissue. Following injury, muscle is able to robustly regenerate because of tissue-resident muscle stem cells, called satellite cells. In addition, efficient and complete regeneration depends on other cells resident in muscle – including fibro-adipogenic progenitors (FAPs). Increasing evidence from single-cell analyses and genetic and transplantation experiments suggests that satellite cells and FAPs are heterogeneous cell populations. Here, we review our current understanding of the heterogeneity of satellite cells, their myogenic derivatives and FAPs in terms of gene expression, anatomical location, age and timing during the regenerative process – each of which have potentially important functional consequences.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Kuangguo Zhou ◽  
Mi Zhou ◽  
Ling Cheng ◽  
Xing Chen ◽  
Xiaomin Wang ◽  
...  

AbstractAcute myeloid leukemia (AML) is a deadly cancer characterized by an expanded self-renewal capacity that is associated with the accumulation of immature myeloid cells. Emerging evidence shows that methyl-CpG-binding domain protein 2 (MBD2), a DNA methylation reader, often participates in the transcriptional silencing of hypermethylated genes in cancer cells. Nevertheless, the role of MBD2 in AML remains unclear. Herein, by using an MLL-AF9 murine model and a human AML cell line, we observed that loss of MBD2 could delay the initiation and progression of leukemia. MBD2 depletion significantly reduced the leukemia burden by decreasing the proportion of leukemic stem cells (LSCs) and inhibiting leukemia cell proliferation in serial transplantation experiments, thereby allowing leukemic blasts to transition to a more mature state reflecting normal myelopoiesis. Both gene expression analyses and bioinformatic studies revealed that MBD2 negatively modulated genes related to myeloid differentiation, and was necessary to sustain the MLL-AF9 oncogene-induced gene program. We further demonstrated that MBD2 could promote LSC cell cycle progression through epigenetic regulation of CDKN1C transcription probably by binding to its promoter region. Taken together, our data suggest that MBD2 promotes AML development and could be a therapeutic target for myeloid malignancies.


2021 ◽  
Author(s):  
Tatsuhide Tanaka ◽  
Hiroaki Okuda ◽  
Yuki Terada ◽  
Ayami Isonishi ◽  
Masahiro Kitabatake ◽  
...  

Abstract Crosstalk between peripheral neurons and immune cells plays important roles in pain sensation. We identified sorting nexin 25 (Snx25) as a pain-modulating gene in a transgenic mouse line with reduced pain behavior. Snx25 conditional-KO (cKO) in monocyte/macrophage-lineage cells but not in the peripheral sensory neurons reduced pain responses in both normal and neuropathic conditions. Cross transplantation experiments of bone marrows between cKO and wild type (WT) mice revealed that cKO macrophages caused dull phenotype in WT mice and WT macrophages in turn increased pain behavior in cKO mice. SNX25 in dermal macrophages enhances NGF (one of the key factors in pain sensation) production by inhibiting ubiquitin-mediated degradation of Nrf2, a transcription factor that activates Ngf mRNA synthesis. We conclude that dermal macrophages set pain sensitivity by producing and secreting NGF into the dermis in addition to their host defense functions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiayu Zhang ◽  
Tingting Lan ◽  
Xue Han ◽  
Yuchan Xu ◽  
Li Liao ◽  
...  

Abstract Background The low survival rate or dysfunction of extracellular matrix (ECM)-based engineered organs caused by the adverse effects of unfavourable local microenvironments on seed cell viability and stemness, especially the effects of excessive reactive oxygen species (ROS), prompted us to examine the importance of controlling oxidative damage for tissue transplantation and regeneration. We sought to improve the tolerance of seed cells to the transplant microenvironment via antioxidant pathways, thus promoting transplant efficiency and achieving better tissue regeneration. Methods We improved the antioxidative properties of ECM-based bioroots with higher glutathione contents in dental follicle stem cells (DFCs) by pretreating cells or loading scaffolds with the antioxidant NAC. Additionally, we developed an in situ rat alveolar fossa implantation model to evaluate the long-term therapeutic effects of NAC in bioroot transplantation. Results The results showed that NAC decreased H2O2-induced cellular damage and maintained the differentiation potential of DFCs. The transplantation experiments further verified that NAC protected the biological properties of DFCs by repressing replacement resorption or ankylosis, thus facilitating bioroot regeneration. Conclusions The following findings suggest that NAC could significantly protect stem cell viability and stemness during oxidative stress and exert better and prolonged effects in bioroot intragrafts.


2021 ◽  
pp. 110645
Author(s):  
Yue Wang ◽  
Boyu Zhang ◽  
Jérémie Kropp ◽  
Nadya Morozova

2021 ◽  
Author(s):  
Tatsuhide Tanaka ◽  
Hiroaki Okuda ◽  
Yuki Terada ◽  
Takeaki Shinjo ◽  
Mitsuko Banja ◽  
...  

AbstractCrosstalk between peripheral neurons and immune cells plays important roles in pain sensation. We identified sorting nexin 25 (Snx25) as a pain-modulating gene in a transgenic mouse line with reduced pain behavior. Snx25 conditional-KO (cKO) in monocyte/macrophage-lineage cells but not in the peripheral sensory neurons reduced pain responses in both normal and neuropathic conditions. Cross transplantation experiments of bone marrows between cKO and wild type (WT) mice revealed that cKO macrophages caused dull phenotype in WT mice and WT macrophages in turn increased pain behavior in cKO mice. SNX25 in dermal macrophages enhances NGF (one of the key factors in pain sensation) production by inhibiting ubiquitin-mediated degradation of Nrf2, a transcription factor that activates Ngf mRNA synthesis. We conclude that dermal macrophages set pain sensitivity by producing and secreting NGF into the dermis in addition to their host defense functions.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christian SM Helker ◽  
Jean Eberlein ◽  
Kerstin Wilhelm ◽  
Toshiya Sugino ◽  
Julian Malchow ◽  
...  

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.


2020 ◽  
Author(s):  
Mohamed Mohamed Haroon ◽  
Vairavan Lakshmanan ◽  
Souradeep R Sarkar ◽  
Kai Lei ◽  
Praveen Kumar Vemula ◽  
...  

Mitochondrial state changes were shown to be critical for stem cell function. However, variation in the mitochondrial content in stem cells and the implication, if any, on differentiation is poorly understood. Here, using cellular and molecular studies, we show that the planarian pluripotent stem cells (PSCs) have low mitochondrial mass compared to its progenitors. Further, the mitochondrial mass correlated with OxPhos and inhibiting the transition to OxPhos dependent metabolism in cultured cells resulted in higher PIWI-1High neoblasts. Transplantation experiments provided functional validation that neoblasts with low mitochondrial mass are the true PSCs. In summary, we show that low mitochondrial mass is a hallmark of PSCs in planaria and provide a mechanism to isolate live, functionally active, PSCs from different cell cycle stages (G0/G1 and S, G2/M). Our study demonstrates that the change in mitochondrial metabolism, a feature of PSCs is conserved in planaria and highlights its role in organismal regeneration.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev185033
Author(s):  
Pietro Fazzari ◽  
Niall Mortimer ◽  
Odessa Yabut ◽  
Daniel Vogt ◽  
Ramon Pla

ABSTRACTCortical interneurons (CINs) originate in the ganglionic eminences (GEs) and migrate tangentially to the cortex guided by different attractive and repulsive cues. Once inside the cortex, the cellular and molecular mechanisms determining the migration of CINs along the rostrocaudal axis are less well understood. Here, we investigated the cortical distribution of CINs originating in the medial and caudal GEs at different time points. Using molecular and genetic labeling, we showed that, in the mouse, early- and late-born CINs (E12 versus E15) are differentially distributed along the rostrocaudal axis. Specifically, late-born CINs are preferentially enriched in cortical areas closer to their respective sites of origin in the medial or caudal GE. Surprisingly, our in vitro experiments failed to show a preferential migration pattern along the rostrocaudal axis for medial- or caudal-born CINs. Moreover, in utero transplantation experiments suggested that the rostrocaudal dispersion of CINs depends on the developmental stage of the host brain and is limited by the migration time and the increasing size of the developing brain. These data suggest that the embryonic expansion of the cortex contributes to the rostrocaudal distribution of CINs.


Sign in / Sign up

Export Citation Format

Share Document