scholarly journals An Explainable Multi-Modal Neural Network Architecture for Predicting Epilepsy Comorbidities Based on Administrative Claims Data

Author(s):  
Thomas Linden ◽  
Johann de Jong ◽  
Chao Lu ◽  
Victor Kiri ◽  
Kathrin Haeffs ◽  
...  

1AbstractEpilepsy is a complex brain disorder characterized by repetitive seizure events. Epilepsy patients often suffer from various and severe physical and psychological co-morbidities (e.g. anxiety, migraine, stroke, etc.). While general comorbidity prevalences and incidences can be estimated from epidemiological data, such an approach does not take into account that actual patient specific risks can depend on various individual factors, including medication. This motivates to develop a machine learning approach for predicting risks of future comorbidities for the individual epilepsy patient.In this work we use inpatient and outpatient administrative health claims data of around 19,500 US epilepsy patients. We suggest a dedicated multi-modal neural network architecture (Deep personalized LOngitudinal convolutional RIsk model - DeepLORI) to predict the time dependent risk of six common comorbidities of epilepsy patients. We demonstrate superior performance of DeepLORI in a comparison with several existing methods Moreover, we show that DeepLORI based predictions can be interpreted on the level of individual patients. Using a game theoretic approach, we identify relevant features in DeepLORI models and demonstrate that model predictions are explainable in the light of existing knowledge about the disease. Finally, we validate the model on independent data from around 97,000 patients, showing good generalization and stable prediction performance over time.

2021 ◽  
Vol 4 ◽  
Author(s):  
Thomas Linden ◽  
Johann De Jong ◽  
Chao Lu ◽  
Victor Kiri ◽  
Kathrin Haeffs ◽  
...  

Epilepsy is a complex brain disorder characterized by repetitive seizure events. Epilepsy patients often suffer from various and severe physical and psychological comorbidities (e.g., anxiety, migraine, and stroke). While general comorbidity prevalences and incidences can be estimated from epidemiological data, such an approach does not take into account that actual patient-specific risks can depend on various individual factors, including medication. This motivates to develop a machine learning approach for predicting risks of future comorbidities for individual epilepsy patients. In this work, we use inpatient and outpatient administrative health claims data of around 19,500 U.S. epilepsy patients. We suggest a dedicated multimodal neural network architecture (Deep personalized LOngitudinal convolutional RIsk model—DeepLORI) to predict the time-dependent risk of six common comorbidities of epilepsy patients. We demonstrate superior performance of DeepLORI in a comparison with several existing methods. Moreover, we show that DeepLORI-based predictions can be interpreted on the level of individual patients. Using a game theoretic approach, we identify relevant features in DeepLORI models and demonstrate that model predictions are explainable in light of existing knowledge about the disease. Finally, we validate the model on independent data from around 97,000 patients, showing good generalization and stable prediction performance over time.


Author(s):  
Raghuram Mandyam Annasamy ◽  
Katia Sycara

Deep reinforcement learning techniques have demonstrated superior performance in a wide variety of environments. As improvements in training algorithms continue at a brisk pace, theoretical or empirical studies on understanding what these networks seem to learn, are far behind. In this paper we propose an interpretable neural network architecture for Q-learning which provides a global explanation of the model’s behavior using key-value memories, attention and reconstructible embeddings. With a directed exploration strategy, our model can reach training rewards comparable to the state-of-the-art deep Q-learning models. However, results suggest that the features extracted by the neural network are extremely shallow and subsequent testing using out-of-sample examples shows that the agent can easily overfit to trajectories seen during training.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Narjes Rohani ◽  
Changiz Eslahchi

Abstract Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health. Proposing appropriate computational methods for predicting unknown DDI with high precision is challenging. We proposed "NDD: Neural network-based method for drug-drug interaction prediction" for predicting unknown DDIs using various information about drugs. Multiple drug similarities based on drug substructure, target, side effect, off-label side effect, pathway, transporter, and indication data are calculated. At first, NDD uses a heuristic similarity selection process and then integrates the selected similarities with a nonlinear similarity fusion method to achieve high-level features. Afterward, it uses a neural network for interaction prediction. The similarity selection and similarity integration parts of NDD have been proposed in previous studies of other problems. Our novelty is to combine these parts with new neural network architecture and apply these approaches in the context of DDI prediction. We compared NDD with six machine learning classifiers and six state-of-the-art graph-based methods on three benchmark datasets. NDD achieved superior performance in cross-validation with AUPR ranging from 0.830 to 0.947, AUC from 0.954 to 0.994 and F-measure from 0.772 to 0.902. Moreover, cumulative evidence in case studies on numerous drug pairs, further confirm the ability of NDD to predict unknown DDIs. The evaluations corroborate that NDD is an efficient method for predicting unknown DDIs. The data and implementation of NDD are available at https://github.com/nrohani/NDD.


2021 ◽  
Vol 104 ◽  
pp. 398-406
Author(s):  
Felix C. Ringshausen ◽  
Raphael Ewen ◽  
Jan Multmeier ◽  
Bondo Monga ◽  
Marko Obradovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document