scholarly journals A Multiplexed Bacterial Two-Hybrid for Rapid Characterization of Protein-Protein Interactions and Iterative Protein Design

2020 ◽  
Author(s):  
W. Clifford Boldridge ◽  
Ajasja Ljubetič ◽  
Hwangbeom Kim ◽  
Nathan Lubock ◽  
Dániel Szilágyi ◽  
...  

AbstractMyriad biological functions require protein-protein interactions (PPIs), and engineered PPIs are crucial for applications ranging from drug design to synthetic cell circuits. Understanding and engineering specificity in PPIs is particularly challenging as subtle sequence changes can drastically alter specificity. Coiled-coils are small protein domains that have long served as a simple model for studying the sequence-determinants of specificity and have been used as modular building blocks to build large protein nanostructures and synthetic circuits. Despite their simple rules and long-time use, building large sets of well-behaved orthogonal pairs that can be used together is still challenging because predictions are often inaccurate, and, as the library size increases, it becomes difficult to test predictions at scale. To address these problems, we first developed a method called the Next-Generation Bacterial Two-Hybrid (NGB2H), which combines gene synthesis, a bacterial two-hybrid assay, and a high-throughput next-generation sequencing readout, allowing rapid exploration of interactions of programmed protein libraries in a quantitative and scalable way. After validating the NGB2H system on previously characterized libraries, we designed, built, and tested large sets of orthogonal synthetic coiled-coils. In an iterative set of experiments, we assayed more than 8,000 PPIs, used the dataset to train a novel linear model-based coiled-coil scoring algorithm, and then characterized nearly 18,000 interactions to identify the largest set of orthogonal PPIs to date with twenty-two on-target interactions.

2012 ◽  
Vol 23 (19) ◽  
pp. 3911-3922 ◽  
Author(s):  
Yongqiang Wang ◽  
Xinlei Zhang ◽  
Hong Zhang ◽  
Yi Lu ◽  
Haolong Huang ◽  
...  

The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.


2009 ◽  
Vol 284 (24) ◽  
pp. 16369-16376 ◽  
Author(s):  
Xuebo Hu ◽  
Sungkwon Kang ◽  
Xiaoyue Chen ◽  
Charles B. Shoemaker ◽  
Moonsoo M. Jin

A quantitative in vivo method for detecting protein-protein interactions will enhance our understanding of protein interaction networks and facilitate affinity maturation as well as designing new interaction pairs. We have developed a novel platform, dubbed “yeast surface two-hybrid (YS2H),” to enable a quantitative measurement of pairwise protein interactions via the secretory pathway by expressing one protein (bait) anchored to the cell wall and the other (prey) in soluble form. In YS2H, the prey is released either outside of the cells or remains on the cell surface by virtue of its binding to the bait. The strength of their interaction is measured by antibody binding to the epitope tag appended to the prey or direct readout of split green fluorescence protein (GFP) complementation. When two α-helices forming coiled coils were expressed as a pair of prey and bait, the amount of the prey in complex with the bait progressively decreased as the affinity changes from 100 pm to 10 μm. With GFP complementation assay, we were able to discriminate a 6-log difference in binding affinities in the range of 100 pm to 100 μm. The affinity estimated from the level of antibody binding to fusion tags was in good agreement with that measured in solution using a surface plasmon resonance technique. In contrast, the level of GFP complementation linearly increased with the on-rate of coiled coil interactions, likely because of the irreversible nature of GFP reconstitution. Furthermore, we demonstrate the use of YS2H in exploring the nature of antigen recognition by antibodies and activation allostery in integrins and in isolating heavy chain-only antibodies against botulinum neurotoxin.


2015 ◽  
Vol 112 (43) ◽  
pp. 13144-13149 ◽  
Author(s):  
David E. Mortenson ◽  
Jay D. Steinkruger ◽  
Dale F. Kreitler ◽  
Dominic V. Perroni ◽  
Gregory P. Sorenson ◽  
...  

Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.


1997 ◽  
Vol 8 (8) ◽  
pp. 1405-1414 ◽  
Author(s):  
M Tarsounas ◽  
R E Pearlman ◽  
P J Gasser ◽  
M S Park ◽  
P B Moens

In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II.


2001 ◽  
Vol 68 ◽  
pp. 111-123 ◽  
Author(s):  
John Walshaw ◽  
Jennifer M. Shipway ◽  
Derek N. Woolfson

The coiled coil is a ubiquitous motif that guides many different protein-protein interactions. The accepted hallmark of coiled coils is a seven-residue (heptad) sequence repeat. The positions of this repeat are labelled a-b-c-d-e-f-g, with residues at a and d tending to be hydrophobic. Such sequences form amphipathic α-helices, which assemble into helical bundles via knobs-into-holes interdigitation of residues from neighbouring helices. We wrote an algorithm, SOCKET, to identify this packing in protein structures, and used this to gather a database of coiled-coil structures from the Protein Data Bank. Surprisingly, in addition to commonly accepted structures with a single, contiguous heptad repeat, we identified sequences with multiple, offset heptad repeats. These 'new' sequence patterns help to explain oligomer-state specification in coiled coils. Here we focus on the structural consequences for sequences with two heptad repeats offset by two residues, i.e. a/f′-b/g′-c/a′-d/b′-e/c′-f/d′-g/e′. This sets up two hydrophobic seams on opposite sides of the helix formed. We describe how such helices may combine to bury these hydrophobic surfaces in two different ways and form two distinct structures: open 'α-sheets' and closed 'α-cylinders'. We highlight these with descriptions of natural structures and outline possibilities for protein design.


2020 ◽  
Author(s):  
Valeria Velásquez-Zapata ◽  
J. Mitch Elmore ◽  
Sagnik Banerjee ◽  
Karin S. Dorman ◽  
Roger P. Wise

AbstractInteractomes embody one of the most effective representations of cellular behavior by revealing function through protein associations. In order to build these models at the organism scale, high-throughput techniques are required to identify interacting pairs of proteins. Next-generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep sequencing are promising approaches to generate protein-protein interaction networks in any organism. However, challenges remain to mining reliable information from these screens and thus, limit its broader implementation. Here, we describe a statistical framework, designated Y2H-SCORES, for analyzing high-throughput Y2H screens that considers key aspects of experimental design, normalization, and controls. Three quantitative ranking scores were implemented to identify interacting partners, comprising: 1) significant enrichment under selection for positive interactions, 2) degree of interaction specificity among multi-bait comparisons, and 3) selection of in-frame interactors. Using simulation and an empirical dataset, we provide a quantitative assessment to predict interacting partners under a wide range of experimental scenarios, facilitating independent confirmation by one-to-one bait-prey tests. Simulation of Y2H-NGIS identified conditions that maximize detection of true interactors, which can be achieved with protocols such as prey library normalization, maintenance of larger culture volumes and replication of experimental treatments. Y2H-SCORES can be implemented in different yeast-based interaction screenings, accelerating the biological interpretation of experimental results. Proof-of-concept was demonstrated by discovery and validation of a novel interaction between the barley powdery mildew effector, AVRA13, with the vesicle-mediated thylakoid membrane biogenesis protein, HvTHF1.Author SummaryOrganisms respond to their environment through networks of interacting proteins and other biomolecules. In order to investigate these interacting proteins, many in vitro and in vivo techniques have been used. Among these, yeast two-hybrid (Y2H) has been integrated with next generation sequencing (NGS) to approach protein-protein interactions on a genome-wide scale. The fusion of these two methods has been termed next-generation-interaction screening, abbreviated as Y2H-NGIS. However, the massive and diverse data sets resulting from this technology have presented unique challenges to analysis. To address these challenges, we optimized the computational and statistical evaluation of Y2H-NGIS to provide metrics to identify high-confidence interacting proteins under a variety of dataset scenarios. Our proposed framework can be extended to different yeast-based interaction settings, utilizing the general principles of enrichment, specificity, and in-frame prey selection to accurately assemble protein-protein interaction networks. Lastly, we showed how the pipeline works experimentally, by identifying and validating a novel interaction between the barley powdery mildew effector AVRA13 and the barley vesicle-mediated thylakoid membrane biogenesis protein, HvTHF1. Y2H-SCORES software is available at GitHub repository https://github.com/Wiselab2/Y2H-SCORES.


2005 ◽  
Vol 388 (3) ◽  
pp. 835-841 ◽  
Author(s):  
Michael R. LUKE ◽  
Fiona HOUGHTON ◽  
Matthew A. PERUGINI ◽  
Paul A. GLEESON

A recently described family of TGN (trans-Golgi network) proteins, all of which contain a GRIP domain targeting sequence, has been proposed to play a role in membrane transport. On the basis of the high content of heptad repeats, GRIP domain proteins are predicted to contain extensive coiled-coil regions that have the potential to mediate protein–protein interactions. Four mammalian GRIP domain proteins have been identified which are targeted to the TGN through their GRIP domains, namely p230, golgin-97, GCC88 and GCC185. In the present study, we have investigated the ability of the four mammalian GRIP domain proteins to interact. Using a combination of immunoprecipitation experiments of epitope-tagged GRIP domain proteins, cross-linking experiments and yeast two-hybrid interactions, we have established that the GRIP proteins can self-associate to form homodimers exclusively. Two-hybrid analysis indicated that the N- and C-terminal fragments of GCC88 can interact with themselves but not with each other, suggesting that the GRIP domain proteins form parallel coiled-coil dimers. Analysis of purified recombinant golgin-97 by CD spectroscopy indicated a 67% α-helical structure, consistent with a high content of coiled-coil sequences. These results support a model for GRIP domain proteins as extended rod-like homodimeric molecules. The formation of homodimers, but not heterodimers, indicates that each of the four mammalian TGN golgins has the potential to function independently.


Sign in / Sign up

Export Citation Format

Share Document