helical bundles
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yun Yang ◽  
Jiwei Liu ◽  
Bradley R. Clarke ◽  
Laura Seidel ◽  
Jani R. Bolla ◽  
...  

AbstractBacterial extracellular polysaccharides (EPSs) play critical roles in virulence. Many bacteria assemble EPSs via a multi-protein “Wzx-Wzy” system, involving glycan polymerization at the outer face of the cytoplasmic/inner membrane. Gram-negative species couple polymerization with translocation across the periplasm and outer membrane and the master regulator of the system is the tyrosine autokinase, Wzc. This near atomic cryo-EM structure of dephosphorylated Wzc from E. coli shows an octameric assembly with a large central cavity formed by transmembrane helices. The tyrosine autokinase domain forms the cytoplasm region, while the periplasmic region contains small folded motifs and helical bundles. The helical bundles are essential for function, most likely through interaction with the outer membrane translocon, Wza. Autophosphorylation of the tyrosine-rich C-terminus of Wzc results in disassembly of the octamer into multiply phosphorylated monomers. We propose that the cycling between phosphorylated monomer and dephosphorylated octamer regulates glycan polymerization and translocation.


2021 ◽  
Vol 22 (4) ◽  
pp. 1955
Author(s):  
Aikaterini Kefala ◽  
Maria Amprazi ◽  
Efstratios Mylonas ◽  
Dina Kotsifaki ◽  
Mary Providaki ◽  
...  

Recurrent protein folding motifs include various types of helical bundles formed by α-helices that supercoil around each other. While specific patterns of amino acid residues (heptad repeats) characterize the highly versatile folding motif of four-α-helical bundles, the significance of the polypeptide chain directionality is not sufficiently understood, although it determines sequence patterns, helical dipoles, and other parameters for the folding and oligomerization processes of bundles. To investigate directionality aspects in sequence-structure relationships, we reversed the amino acid sequences of two well-characterized, highly regular four-α-helical bundle proteins and studied the folding, oligomerization, and structural properties of the retro-proteins, using Circular Dichroism Spectroscopy (CD), Size Exclusion Chromatography combined with Multi-Angle Laser Light Scattering (SEC-MALS), and Small Angle X-ray Scattering (SAXS). The comparison of the parent proteins with their retro-counterparts reveals that while the α-helical character of the parents is affected to varying degrees by sequence reversal, the folding states, oligomerization propensities, structural stabilities, and shapes of the new molecules strongly depend on the characteristics of the heptad repeat patterns. The highest similarities between parent and retro-proteins are associated with the presence of uninterrupted heptad patterns in helical bundles sequences.


2021 ◽  
Vol 118 (3) ◽  
pp. e2020054118
Author(s):  
Aaron Tan ◽  
Alexander J. Pak ◽  
Dustin R. Morado ◽  
Gregory A. Voth ◽  
John A. G. Briggs

The CA (capsid) domain of immature HIV-1 Gag and the adjacent spacer peptide 1 (SP1) play a key role in viral assembly by forming a lattice of CA hexamers, which adapts to viral envelope curvature by incorporating small lattice defects and a large gap at the site of budding. This lattice is stabilized by intrahexameric and interhexameric CA-CA interactions, which are important in regulating viral assembly and maturation. We applied subtomogram averaging and classification to determine the oligomerization state of CA at lattice edges and found that CA forms partial hexamers. These structures reveal the network of interactions formed by CA-SP1 at the lattice edge. We also performed atomistic molecular dynamics simulations of CA-CA interactions stabilizing the immature lattice and partial CA-SP1 helical bundles. Free energy calculations reveal increased propensity for helix-to-coil transitions in partial hexamers compared to complete six-helix bundles. Taken together, these results suggest that the CA dimer is the basic unit of lattice assembly, partial hexamers exist at lattice edges, these are in a helix-coil dynamic equilibrium, and partial helical bundles are more likely to unfold, representing potential sites for HIV-1 maturation initiation.


Author(s):  
Pang Zhi ◽  
Ting Qi ◽  
Baolin Li

Two novel helical aromatic foldamer derivatives TPA-Q6(n-He) and TPA-Q6(i-Bu) were synthesized and characterized by introducing n-hexyloxy and isobutoxy side chains, respectively, and modifying quinoline amide foldamers with the triphenylamine (TPA)...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pasi Laurinmäki ◽  
Shabih Shakeel ◽  
Jens-Ola Ekström ◽  
Pezhman Mohammadi ◽  
Dan Hultmark ◽  
...  

AbstractNora virus, a virus of Drosophila, encapsidates one of the largest single-stranded RNA virus genomes known. Its taxonomic affinity is uncertain as it has a picornavirus-like cassette of enzymes for virus replication, but the capsid structure was at the time for genome publication unknown. By solving the structure of the virus, and through sequence comparison, we clear up this taxonomic ambiguity in the invertebrate RNA virosphere. Despite the lack of detectable similarity in the amino acid sequences, the 2.7 Å resolution cryoEM map showed Nora virus to have T = 1 symmetry with the characteristic capsid protein β-barrels found in all the viruses in the Picornavirales order. Strikingly, α-helical bundles formed from the extended C-termini of capsid protein VP4B and VP4C protrude from the capsid surface. They are similar to signalling molecule folds and implicated in virus entry. Unlike other viruses of Picornavirales, no intra-pentamer stabilizing annulus was seen, instead the intra-pentamer stability comes from the interaction of VP4C and VP4B N-termini. Finally, intertwining of the N-termini of two-fold symmetry-related VP4A capsid proteins and RNA, provides inter-pentamer stability. Based on its distinct structural elements and the genetic distance to other picorna-like viruses we propose that Nora virus, and a small group of related viruses, should have its own family within the order Picornavirales.


2020 ◽  
Author(s):  
Aaron Tan ◽  
Alexander J. Pak ◽  
Dustin R. Morado ◽  
Gregory A. Voth ◽  
John A. G. Briggs

AbstractThe CA (capsid) domain of immature HIV-1 Gag and the adjacent spacer peptide 1 (SP1) play a key role in viral assembly by forming a lattice of CA hexamers, which adapts to viral envelope curvature by incorporating small lattice defects and a large gap at the site of budding. This lattice is stabilized by intra- and inter-hexameric CA-CA interactions, which are important in regulating viral assembly and maturation. We applied subtomogram averaging and classification to determine the structure of CA at lattice edges and found that they form partial hexamers. These structures reveal the network of interactions formed by CA-SP1at the lattice edge. We also performed atomistic molecular dynamics simulations of CA-CA interactions stabilizing the immature lattice and of partial CA-SP1 helical bundles. Free energy calculations reveal increased propensity for helix-to-coil transitions in partial hexamers compared to complete six-helix bundles. Taken together, these results suggest that the CA dimer is the basic unit of lattice assembly, that partial hexamers exist at lattice edges, that these are in a helix-coil dynamic equilibrium and that partial helical bundles are more likely to unfold, representing potential sites for HIV-1 maturation initiation.Significance StatementHIV-1 particle assembly is driven by the viral Gag protein, which oligomerizes into an hexameric array on the inner surface of the viral envelope, forming a truncated spherical lattice containing large and small gaps. Gag is then cut by the viral protease, disassembles and rearranges to form the mature, infectious virus. Here, we present structures and molecular dynamics simulations of the edges of the immature Gag lattice. Our analysis shows that Gag dimers are the basic assembly unit of the HIV-1 particle, that lattice edges are partial hexamers, and that partial hexamers are prone to structural changes allowing protease to cut Gag. These findings provide insights into assembly of the immature virus, its structure, and how it disassembles during maturation.


2020 ◽  
Vol 3 (5) ◽  
pp. e201900527 ◽  
Author(s):  
Nyssa B Samanas ◽  
Emily A Engelhart ◽  
Suzanne Hoppins

Mitofusins are members of the dynamin-related protein family of large GTPases that harness the energy from nucleotide hydrolysis to remodel membranes. Mitofusins possess four structural domains, including a GTPase domain, two extended helical bundles (HB1 and HB2), and a transmembrane region. We have characterized four Charcot-Marie-Tooth type 2A–associated variants with amino acid substitutions in Mfn2 that are proximal to the hinge that connects HB1 and HB2. A functional defect was not apparent in cells as the mitochondrial morphology of Mfn2-null cells was restored by expression of any of these variants. However, a significant fusion deficiency was observed in vitro, which was improved by the addition of crude cytosol extract or soluble Bax. All four variants had reduced nucleotide-dependent assembly in cis, but not trans, and this was also improved by the addition of Bax. Together, our data demonstrate an important role for this region in Mfn2 GTP-dependent oligomerization and membrane fusion and is consistent with a model where cytosolic factors such as Bax are masking molecular defects associated with Mfn2 disease variants in cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jing Li ◽  
Zhiyu Zhao ◽  
Emad Tajkhorshid

AbstractSecondary active transporters use electrochemical gradient of ions to fuel the “uphill” translocation of the substrate following the alternating-access model. The coupling of ions to conformational dynamics of the protein remains one of the least characterized aspects of the transporter function. We employ extended molecular dynamics (MD) simulations to examine the Na+-binding effects on the structure and dynamics of a LeuT-fold, Na+-coupled secondary transporter (Mhp1) in its major conformational states, i.e., the outward-facing (OF) and inward-facing (IF) states, as well as on the OF ↔ IF state transition. Microsecond-long, unbiased MD simulations illustrate that Na+ stabilizes an OF conformation favorable for substrate association, by binding to a highly conserved site at the interface between the two helical bundles and restraining their relative position and motion. Furthermore, a special-protocol biased simulation for state transition suggests that Na+ binding hinders the OF ↔ IF transition. These synergistic Na+-binding effects allosterically couple the ion and substrate binding sites and modify the kinetics of state transition, collectively increasing the lifetime of an OF conformation with high substrate affinity, thereby facilitating substrate recruitment from a low-concentration environment. Based on the similarity between our findings for Mhp1 and experimental reports on LeuT, we propose that this model may represent a general Na+-coupling mechanism among LeuT-fold transporters.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Joshua R. Burns ◽  
Craig J. Morton ◽  
Michael W. Parker ◽  
Rodney K. Tweten

ABSTRACT The crystal structures of the soluble monomers of the pore-forming cholesterol-dependent cytolysins (CDCs) contain two α-helical bundles that flank a twisted core β-sheet. This protein fold is the hallmark of the CDCs, as well as of the membrane attack complex/perforin immune defense proteins and the stonefish toxins. To form the β-barrel pore, a core β-sheet is flattened to align the membrane-spanning β-hairpins. Concomitantly with this conformational change, the two α-helical bundles that flank the core β-sheet break their restraining contacts and refold into two membrane-spanning β-hairpins of the β-barrel pore. The studies herein show that in the monomer structure of the archetype CDC perfringolysin O (PFO), a conserved Met-Met-Phe triad simultaneously contributes to maintaining the twist in this core β-sheet, as well as restricting the α-helical–to–β-strand transition necessary to form one of two membrane-spanning β-hairpins. A previously identified intermolecular π-stacking interaction is now shown to disrupt the interactions mediated by this conserved triad. This is required to establish the subsequent intermolecular electrostatic interaction, which has previously been shown to drive the final conformational changes necessary to form the β-barrel pore. Hence, these studies show that the intermolecular π-stacking and electrostatic interactions work in tandem to flatten the core β-sheet and initiate the α-helical–to–β-strand transitions to form the β-barrel pore. IMPORTANCE A unique feature of the CDC/MACPF/SNTX (cholesterol-dependent cytolysin/membrane attack complex perforin/stonefish toxin) superfamily of pore-forming toxins is that the β-strands that comprise the β-barrel pore are derived from a pair of α-helical bundles. These studies reveal the molecular basis by which the formation of intermolecular interactions within the prepore complex drive the disruption of intramolecular interactions within each monomer of the prepore to trigger the α-helical–to–β-strand transition and formation of the β-barrel pore.


Sign in / Sign up

Export Citation Format

Share Document