scholarly journals High-resolution structures of a heterochiral coiled coil

2015 ◽  
Vol 112 (43) ◽  
pp. 13144-13149 ◽  
Author(s):  
David E. Mortenson ◽  
Jay D. Steinkruger ◽  
Dale F. Kreitler ◽  
Dominic V. Perroni ◽  
Gregory P. Sorenson ◽  
...  

Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.

2012 ◽  
Vol 23 (19) ◽  
pp. 3911-3922 ◽  
Author(s):  
Yongqiang Wang ◽  
Xinlei Zhang ◽  
Hong Zhang ◽  
Yi Lu ◽  
Haolong Huang ◽  
...  

The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.


2006 ◽  
Vol 398 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Prim de Bie ◽  
Bart van de Sluis ◽  
Ezra Burstein ◽  
Karen J. Duran ◽  
Ruud Berger ◽  
...  

COMMD [copper metabolism gene MURR1 (mouse U2af1-rs1 region 1) domain] proteins constitute a recently identified family of NF-κB (nuclear factor κB)-inhibiting proteins, characterized by the presence of the COMM domain. In the present paper, we report detailed investigation of the role of this protein family, and specifically the role of the COMM domain, in NF-κB signalling through characterization of protein–protein interactions involving COMMD proteins. The small ubiquitously expressed COMMD6 consists primarily of the COMM domain. Therefore COMMD1 and COMMD6 were analysed further as prototype members of the COMMD protein family. Using specific antisera, interaction between endogenous COMMD1 and COMMD6 is described. This interaction was verified by independent techniques, appeared to be direct and could be detected throughout the whole cell, including the nucleus. Both proteins inhibit TNF (tumour necrosis factor)-induced NF-κB activation in a non-synergistic manner. Mutation of the amino acid residues Trp24 and Pro41 in the COMM domain of COMMD6 completely abolished the inhibitory effect of COMMD6 on TNF-induced NF-κB activation, but this was not accompanied by loss of interaction with COMMD1, COMMD6 or the NF-κB subunit RelA. In contrast with COMMD1, COMMD6 does not bind to IκBα (inhibitory κBα), indicating that both proteins inhibit NF-κB in an overlapping, but not completely similar, manner. Taken together, these data support the significance of COMMD protein–protein interactions and provide new mechanistic insight into the function of this protein family in NF-κB signalling.


2020 ◽  
Author(s):  
W. Clifford Boldridge ◽  
Ajasja Ljubetič ◽  
Hwangbeom Kim ◽  
Nathan Lubock ◽  
Dániel Szilágyi ◽  
...  

AbstractMyriad biological functions require protein-protein interactions (PPIs), and engineered PPIs are crucial for applications ranging from drug design to synthetic cell circuits. Understanding and engineering specificity in PPIs is particularly challenging as subtle sequence changes can drastically alter specificity. Coiled-coils are small protein domains that have long served as a simple model for studying the sequence-determinants of specificity and have been used as modular building blocks to build large protein nanostructures and synthetic circuits. Despite their simple rules and long-time use, building large sets of well-behaved orthogonal pairs that can be used together is still challenging because predictions are often inaccurate, and, as the library size increases, it becomes difficult to test predictions at scale. To address these problems, we first developed a method called the Next-Generation Bacterial Two-Hybrid (NGB2H), which combines gene synthesis, a bacterial two-hybrid assay, and a high-throughput next-generation sequencing readout, allowing rapid exploration of interactions of programmed protein libraries in a quantitative and scalable way. After validating the NGB2H system on previously characterized libraries, we designed, built, and tested large sets of orthogonal synthetic coiled-coils. In an iterative set of experiments, we assayed more than 8,000 PPIs, used the dataset to train a novel linear model-based coiled-coil scoring algorithm, and then characterized nearly 18,000 interactions to identify the largest set of orthogonal PPIs to date with twenty-two on-target interactions.


2001 ◽  
Vol 68 ◽  
pp. 111-123 ◽  
Author(s):  
John Walshaw ◽  
Jennifer M. Shipway ◽  
Derek N. Woolfson

The coiled coil is a ubiquitous motif that guides many different protein-protein interactions. The accepted hallmark of coiled coils is a seven-residue (heptad) sequence repeat. The positions of this repeat are labelled a-b-c-d-e-f-g, with residues at a and d tending to be hydrophobic. Such sequences form amphipathic α-helices, which assemble into helical bundles via knobs-into-holes interdigitation of residues from neighbouring helices. We wrote an algorithm, SOCKET, to identify this packing in protein structures, and used this to gather a database of coiled-coil structures from the Protein Data Bank. Surprisingly, in addition to commonly accepted structures with a single, contiguous heptad repeat, we identified sequences with multiple, offset heptad repeats. These 'new' sequence patterns help to explain oligomer-state specification in coiled coils. Here we focus on the structural consequences for sequences with two heptad repeats offset by two residues, i.e. a/f′-b/g′-c/a′-d/b′-e/c′-f/d′-g/e′. This sets up two hydrophobic seams on opposite sides of the helix formed. We describe how such helices may combine to bury these hydrophobic surfaces in two different ways and form two distinct structures: open 'α-sheets' and closed 'α-cylinders'. We highlight these with descriptions of natural structures and outline possibilities for protein design.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 119-128
Author(s):  
M Rhys Dow ◽  
Paul E Mains

Abstract We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Dan Tan ◽  
Qiang Li ◽  
Mei-Jun Zhang ◽  
Chao Liu ◽  
Chengying Ma ◽  
...  

To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction.


2009 ◽  
Vol 284 (24) ◽  
pp. 16369-16376 ◽  
Author(s):  
Xuebo Hu ◽  
Sungkwon Kang ◽  
Xiaoyue Chen ◽  
Charles B. Shoemaker ◽  
Moonsoo M. Jin

A quantitative in vivo method for detecting protein-protein interactions will enhance our understanding of protein interaction networks and facilitate affinity maturation as well as designing new interaction pairs. We have developed a novel platform, dubbed “yeast surface two-hybrid (YS2H),” to enable a quantitative measurement of pairwise protein interactions via the secretory pathway by expressing one protein (bait) anchored to the cell wall and the other (prey) in soluble form. In YS2H, the prey is released either outside of the cells or remains on the cell surface by virtue of its binding to the bait. The strength of their interaction is measured by antibody binding to the epitope tag appended to the prey or direct readout of split green fluorescence protein (GFP) complementation. When two α-helices forming coiled coils were expressed as a pair of prey and bait, the amount of the prey in complex with the bait progressively decreased as the affinity changes from 100 pm to 10 μm. With GFP complementation assay, we were able to discriminate a 6-log difference in binding affinities in the range of 100 pm to 100 μm. The affinity estimated from the level of antibody binding to fusion tags was in good agreement with that measured in solution using a surface plasmon resonance technique. In contrast, the level of GFP complementation linearly increased with the on-rate of coiled coil interactions, likely because of the irreversible nature of GFP reconstitution. Furthermore, we demonstrate the use of YS2H in exploring the nature of antigen recognition by antibodies and activation allostery in integrins and in isolating heavy chain-only antibodies against botulinum neurotoxin.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veenstra TD ◽  

Identifying all the molecular components within a living cell is the first step into understanding how it functions. To further understand how a cell functions requires identifying the interactions that occur between these components. This fact is especially relevant for proteins. No protein within a human cell functions on its own without interacting with another biomolecule - usually another protein. While Protein-Protein Interactions (PPI) have historically been determined by examining a single protein per study, novel technologies developed over the past couple of decades are enabling high-throughput methods that aim to describe entire protein networks within cells. In this review, some of the technologies that have led to these developments are described along with applications of these techniques. Ultimately the goal of these technologies is to map out the entire circuitry of PPI within human cells to be able to predict the global consequences of perturbations to the cell system. This predictive capability will have major impacts on the future of both disease diagnosis and treatment.


2005 ◽  
Vol 386 (3) ◽  
pp. 401-416 ◽  
Author(s):  
Yvonne GROEMPING ◽  
Katrin RITTINGER

The NADPH oxidase of professional phagocytes is a crucial component of the innate immune response due to its fundamental role in the production of reactive oxygen species that act as powerful microbicidal agents. The activity of this multi-protein enzyme is dependent on the regulated assembly of the six enzyme subunits at the membrane where oxygen is reduced to superoxide anions. In the resting state, four of the enzyme subunits are maintained in the cytosol, either through auto-inhibitory interactions or through complex formation with accessory proteins that are not part of the active enzyme complex. Multiple inputs are required to disrupt these inhibitory interactions and allow translocation to the membrane and association with the integral membrane components. Protein interaction modules are key regulators of NADPH oxidase assembly, and the protein–protein interactions mediated via these domains have been the target of numerous studies. Many models have been put forward to describe the intricate network of reversible protein interactions that regulate the activity of this enzyme, but an all-encompassing model has so far been elusive. An important step towards an understanding of the molecular basis of NADPH oxidase assembly and activity has been the recent solution of the three-dimensional structures of some of the oxidase components. We will discuss these structures in the present review and attempt to reconcile some of the conflicting models on the basis of the structural information available.


Sign in / Sign up

Export Citation Format

Share Document