scholarly journals DeepMosaic: Control-independent mosaic single nucleotide variant detection using deep convolutional neural networks

2020 ◽  
Author(s):  
Xiaoxu Yang ◽  
Xin Xu ◽  
Martin W. Breuss ◽  
Danny Antaki ◽  
Laurel L. Ball ◽  
...  

Introductory paragraphMosaic variants (MVs) reflect mutagenic processes during embryonic development1 and environmental exposure2, accumulate with aging, and underlie diseases such as cancer and autism3. The detection of MVs has been computationally challenging due to sparse representation in non-clonally expanded tissues. While heuristic filters and tools trained on clonally expanded MVs with high allelic fractions are proposed, they showed relatively lower sensitivity and more false discoveries4–9. Here we present DeepMosaic, combining an image-based visualization module for single nucleotide MVs, and a convolutional neural networks-based classification module for control-independent MV detection. DeepMosaic achieved a higher accuracy compared with existing methods on biological and simulated sequencing data, with a 96.34% (158/164) experimental validation rate. Of 932 mosaic variants detected by DeepMosaic in 16 whole genome sequenced samples, 21.89-58.58% (204/932-546/932) MVs were overlooked by other methods. Thus, DeepMosaic represents a highly accurate MV classifier that can be implemented as an alternative or complement to existing methods.

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2020 ◽  
Vol 1712 ◽  
pp. 012015
Author(s):  
G. Geetha ◽  
T. Kirthigadevi ◽  
G.Godwin Ponsam ◽  
T. Karthik ◽  
M. Safa

Sign in / Sign up

Export Citation Format

Share Document