scholarly journals Heightened β-adrenergic receptor function in the TgF344-AD rat model drives synaptic potentiation and supports learning and memory

2020 ◽  
Author(s):  
Anthoni M. Goodman ◽  
Bethany M. Langner ◽  
Nateka Jackson ◽  
Capri Alex ◽  
Lori L. McMahon

AbstractThe central noradrenergic (NA) system is critical for maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer’s disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathological tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus (DG) is heavily innervated by LC-NA axons, where released norepinephrine (NE) acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex (EC) to facilitate long-term synaptic plasticity and memory formation. These synapses dysfunction in early AD prior to cognitive impairment. In the TgF344-AD rat model, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6-9 month old wild type and TgF344-AD rats, we discovered that loss of LC-NA axons co-insides with heightened β-AR function at medial perforant path-dentate granule cell synapses (MPP-DCG) that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.Significance StatementThe locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer’s disease pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Chenxia Sheng ◽  
Panpan Xu ◽  
Kexin Zhou ◽  
Dan Deng ◽  
Chunhu Zhang ◽  
...  

Icariin (ICA), a prenylated flavanol glycoside present in abundant quantities in Epimedium sagittatum, has shown promise in the treatment and prevention of Alzheimer’s disease. Damage to synaptic plasticity induced by amyloid-beta-mediated neurotoxicity is considered a main pathological mechanism driving the learning and memory deficits present in patients with Alzheimer’s disease. This study investigated the neuroprotective effects of icariin in an Aβ1–42-induced rat model of Alzheimer’s disease. Our results showed that Aβ1–42 injection induced loss of learning and memory behaviour in the Morris water maze, which could be reversed with intragastric administration of ICA. Furthermore, ICA reversed decreases in PSD-95, BDNF, pTrkB, pAkt, and pCREB expressions and prevented deterioration of synaptic interface structure. These findings indicate that ICA may improve synaptic plasticity through the BDNF/TrkB/Akt pathway and provide further evidence for its clinical application to improve learning and memory in patients with Alzheimer’s disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yao Xiao ◽  
Xifeng Wang ◽  
Siyi Wang ◽  
Jun Li ◽  
Xueyu Xu ◽  
...  

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disorder that is associated with learning, memory, and cognitive deficits. Neuroinflammation and synapse loss are involved in the pathology of AD. Diverse measures have been applied to treat AD, but currently, there is no effective treatment. Celastrol (CEL) is a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F that has been shown to enhance cell viability and inhibit amyloid-β production induced by lipopolysaccharides in vitro. In the present study, the protective effect of CEL on Aβ25-35-induced rat model of AD was assessed. Our results showed that CEL administration at a dose of 2 mg/kg/day improved spatial memory in the Morris water maze. Further biochemical analysis showed that CEL treatment of intrahippocampal Aβ25-35-microinjected rats attenuated hippocampal NF-κB activity; inhibited proinflammatory markers, namely, IL-1β, IL-6, and TNF-α; and upregulated anti-inflammatory factors, such as IL-4 and IL-10. Furthermore, CEL upregulated hippocampal neurexin-1β, neuroligin-1, CA1, and PSD95 expression levels, which may improve synaptic function. Simultaneously, CEL also increased glucose metabolism in Aβ25-35-microinjected rats. In conclusion, CEL could exert protective effects against learning and memory decline induced by intrahippocampal Aβ25-35 through anti-inflammation, promote synaptic development, and maintain hippocampal energy metabolism.


2015 ◽  
Vol 764 ◽  
pp. 195-201 ◽  
Author(s):  
Saeed Ghofrani ◽  
Mohammad-Taghi Joghataei ◽  
Simin Mohseni ◽  
Tourandokht Baluchnejadmojarad ◽  
Maryam Bagheri ◽  
...  

Brain ◽  
2017 ◽  
Vol 140 (11) ◽  
pp. 3023-3038 ◽  
Author(s):  
Jacki M Rorabaugh ◽  
Termpanit Chalermpalanupap ◽  
Christian A Botz-Zapp ◽  
Vanessa M Fu ◽  
Natalie A Lembeck ◽  
...  

2020 ◽  
Vol 24 (4) ◽  
pp. 294-307
Author(s):  
Ehsan Aali ◽  
◽  
Mohammad Hossein Esmaeili ◽  
Sead Shima Mahmodi ◽  
Poriea Solimani ◽  
...  

Background: Alzheimer’s Disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. Peroxisome Proliferator-Activated Receptor-γ (PPARγ) play a crucial role in regulating insulin sensitivity and may serve as potential therapeutic targets for AD. Pioglitazone (PIOG), as a PPARγ agonist, reduces β-amyloid and tau proteins, and inhibits neuroinflammation. Objective: This study aims to evaluate the effects of PIOG chronic administration on learning and memory in rat model of Streptozotocin (STZ)-induced AD Methods: Forty-two male Wistar rats were divided into two groups: A. Normal rats divided into three subgroups of Control, Dimethyl Sulfoxide (DMSO), and PIOG; and B. AD rats divided into four subgroups of Vehicle, STZ, STZ+DMSO and STZ+PIOG. The last two AD subgroups received 0.2 mL DMSO and PIOG (10 mg/kg per day) for 21 days. For induction of AD, STZ (3 mg/kg, 10 μl per injection site) were administered into lateral ventricles. All rates were trained under the Morris water maze task. Findings: PIOG impaired the spatial learning and memory in normal rats. Intracerebroventricular injection of STZ significantly increased escape latency and swimming time to find the hidden platform compared to the control group (P<0.05). The amnesic effect of STZ was prevented by PIOG administration such that the escape latency and swimming time to find the hidden platform in the STZ+PIOG group were significantly lower than in the STZ+DMSO group (P<0.05). Conversely, the percentage of time spent and distance swimming in the target quadrant in the probe test in the STZ+ PIOG group rats were significantly higher than those in the STZ + DMSO group. Conclusion: PIOG administration impaired spatial learning and memory in normal rats, but improved learning and memory in rats with STZ-induced AD. It can be useful for treatment of cognitive impairment in AD patients.


2019 ◽  
Vol 70 (2) ◽  
pp. 371-388 ◽  
Author(s):  
Sarah C. Kelly ◽  
Erin C. McKay ◽  
John S. Beck ◽  
Timothy J. Collier ◽  
Anne M. Dorrance ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document