scholarly journals Molecular Transfer Model for pH effects on Intrinsically Disordered Proteins: Theory and Applications

2020 ◽  
Author(s):  
Mauro L. Mugnai ◽  
D. Thirumalai

AbstractWe present a theoretical method to study how changes in pH shape the heterogeneous conformational ensemble explored by intrinsically disordered proteins (IDPs). The theory is developed in the context of coarse-grained models, which enable a fast, accurate, and extensive exploration of conformational space at a given protonation state. In order to account for pH effects, we generalize the Molecular Transfer Model (MTM), in which conformations are re-weighted using the transfer free energy, which is the free energy necessary for bringing to equilibrium in a new environment a “frozen” conformation of the system. Using the semi-grand ensemble, we derive an exact expression of the transfer free energy, which amounts to the appropriate summation over all the protonation states. Because the exact result is computationally too demanding to be useful for large polyelectrolytes or IDPs, we introduce a mean-field (MF) approximation of the transfer free energy. Using a lattice model, we compare the exact and MF results for the transfer free energy and a variety of observables associated with the model IDP. We find that the precise location of the charged groups (the sequence), and not merely the net charge, determines the structural properties. We demonstrate that some of the limitations previously noted for MF theory in the context of globular proteins are mitigated when disordered polymers are studied. The excellent agreement between the exact and MF results poises us to use the method presented here as a computational tool to study the properties of IDPs and other biological systems as a function of pH.

2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Author(s):  
T. M. Perdikari ◽  
N. Jovic ◽  
G. L. Dignon ◽  
Y. C. Kim ◽  
N. L. Fawzi ◽  
...  

AbstractBiomolecules undergo liquid-liquid phase separation (LLPS) resulting in the formation of multicomponent protein-RNA membraneless organelles in cells. However, the physiological and pathological role of post translational modifications (PTMs) on the biophysics of phase behavior is only beginning to be probed. To study the effect of PTMs on LLPS in silico, we extend our transferable coarse-grained model of intrinsically disordered proteins to include phosphorylated and acetylated amino acids. Using the parameters for modified amino acids available for fixed charge atomistic forcefields, we parameterize the size and atomistic hydropathy of the coarse-grained modified amino acid beads, and hence the interactions between the modified and natural amino acids. We then elucidate how the number and position of phosphorylated and acetylated residues alter the protein’s single chain compactness and its propensity to phase separate. We show that both the number and the position of phosphorylated threonines/serines or acetylated lysines can serve as a molecular on/off switch for phase separation in the well-studied disordered regions of FUS and DDX3X, respectively. We also compare modified residues to their commonly used PTM mimics for their impact on chain properties. Importantly, we show that the model can predict and capture experimentally measured differences in the phase behavior for position-specific modifications, showing that the position of modifications can dictate phase separation. In sum, this model will be useful for studying LLPS of post-translationally modified intrinsically disordered proteins and predicting how modifications control phase behavior with position-specific resolution.Statement of SignificancePost-translational modifications are important regulators of liquid-liquid phase separation (LLPS) which drives the formation of biomolecular condensates. Theoretical methods can be used to characterize the biophysical properties of intrinsically disordered proteins (IDPs). Our recent framework for molecular simulations using a Cα-centered coarse-grained model can predict the effect of various perturbations such as mutations (Dignon et al. PloS Comput. Biol, 2018) and temperature (Dignon et al, ACS Cent. Sci., 2019) on LLPS. Here, we expand this framework to incorporate modified residues like phosphothreonine, phosphoserine and acetylysine. This model will prove useful for simulating the phase separation of post-translationally modified IDPs and predicting how position-specific modifications can control phase behavior across the large family of proteins known to be phosphorylated and acetylated.


2021 ◽  
Author(s):  
Murilo N Sanches ◽  
Kaitlin Knapp ◽  
Antonio Bento Oliveira Junior ◽  
Peter G Wolynes ◽  
Jose N Onuchic ◽  
...  

The amyloid-β (Aβ) monomer, an intrinsically disordered peptide, is produced by the cleavage of the amyloid precursor protein, leading to Aβ40 and Aβ42 as major products. These two isoforms generate pathological aggregates, whose accumulation correlates with Alzheimer's disease (AD). Experiments have shown that even though the natural abundance of Aβ42 is smaller than that for Aβ40, the Aβ42 is more aggregation-prone compared to Aβ40. Moreover, several single-point mutations are associated with early-onset forms of AD. This work analyzes coarse-grained AWSEM simulations of normal Aβ40 and Aβ42 monomers, along with six single-point mutations associated with early on set disease. We analyzed the simulations using the Energy Landscape Visualization Method (ELViM), a reaction coordinate-free approach suited to explore the frustrated energy landscapes of intrinsically disordered proteins. ELViM is shown to distinguish the monomer ensembles of variants that rapidly form fibers from those that do not form fibers as readily. It also delineates the amino-acid contacts characterizing each ensemble. The results shed light on the potential of ELViM to probe intrinsically disordered proteins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Song-Ho Chong ◽  
Sihyun Ham

Abstract Folding funnel is the essential concept of the free energy landscape for ordered proteins. How does this concept apply to intrinsically disordered proteins (IDPs)? Here, we address this fundamental question through the explicit characterization of the free energy landscapes of the representative α-helical (HP-35) and β-sheet (WW domain) proteins and of an IDP (pKID) that folds upon binding to its partner (KIX). We demonstrate that HP-35 and WW domain indeed exhibit the steep folding funnel: the landscape slope for these proteins is ca. −50 kcal/mol, meaning that the free energy decreases by ~5 kcal/mol upon the formation of 10% native contacts. On the other hand, the landscape of pKID is funneled but considerably shallower (slope of −24 kcal/mol), which explains why pKID is disordered in free environments. Upon binding to KIX, the landscape of pKID now becomes significantly steep (slope of −54 kcal/mol), which enables otherwise disordered pKID to fold. We also show that it is the pKID–KIX intermolecular interactions originating from hydrophobic residues that mainly confer the steep folding funnel. The present work not only provides the quantitative characterization of the protein folding free energy landscape, but also establishes the usefulness of the folding funnel concept to IDPs.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Julian C. Shillcock ◽  
David B. Thomas ◽  
Jonathan R. Beaumont ◽  
Graeme M. Bragg ◽  
Mark L. Vousden ◽  
...  

Phospholipid membranes surround the cell and its internal organelles, and their multicomponent nature allows the formation of domains that are important in cellular signalling, the immune system, and bacterial infection. Cytoplasmic compartments are also created by the phase separation of intrinsically disordered proteins into biomolecular condensates. The ubiquity of lipid membranes and protein condensates raises the question of how three-dimensional droplets might interact with two-dimensional domains, and whether this coupling has physiological or pathological importance. Here, we explore the equilibrium morphologies of a dilute phase of a model disordered protein interacting with an ideal-mixing, two-component lipid membrane using coarse-grained molecular simulations. We find that the proteins can wet the membrane with and without domain formation, and form phase separated droplets bound to membrane domains. Results from much larger simulations performed on a novel non-von-Neumann compute architecture called POETS, which greatly accelerates their execution compared to conventional hardware, confirm the observations. Reducing the wall clock time for such simulations requires new architectures and computational techniques. We demonstrate here an inter-disciplinary approach that uses real-world biophysical questions to drive the development of new computing hardware and simulation algorithms.


Sign in / Sign up

Export Citation Format

Share Document